Archive for the 'Kenneth Arrow' Category

Lucas and Sargent on Optimization and Equilibrium in Macroeconomics

In a famous contribution to a conference sponsored by the Federal Reserve Bank of Boston, Robert Lucas and Thomas Sargent (1978) harshly attacked Keynes and Keynesian macroeconomics for shortcomings both theoretical and econometric. The econometric criticisms, drawing on the famous Lucas Critique (Lucas 1976), were focused on technical identification issues and on the dependence of estimated regression coefficients of econometric models on agents’ expectations conditional on the macroeconomic policies actually in effect, rendering those econometric models an unreliable basis for policymaking. But Lucas and Sargent reserved their harshest criticism for abandoning what they called the classical postulates.

Economists prior to the 1930s did not recognize a need for a special branch of economics, with its own special postulates, designed to explain the business cycle. Keynes founded that subdiscipline, called macroeconomics, because he thought that it was impossible to explain the characteristics of business cycles within the discipline imposed by classical economic theory, a discipline imposed by its insistence on . . . two postulates (a) that markets . . . clear, and (b) that agents . . . act in their own self-interest [optimize]. The outstanding fact that seemed impossible to reconcile with these two postulates was the length and severity of business depressions and the large scale unemployment which they entailed. . . . After freeing himself of the straight-jacket (or discipline) imposed by the classical postulates, Keynes described a model in which rules of thumb, such as the consumption function and liquidity preference schedule, took the place of decision functions that a classical economist would insist be derived from the theory of choice. And rather than require that wages and prices be determined by the postulate that markets clear — which for the labor market seemed patently contradicted by the severity of business depressions — Keynes took as an unexamined postulate that money wages are “sticky,” meaning that they are set at a level or by a process that could be taken as uninfluenced by the macroeconomic forces he proposed to analyze[1]. . . .

In recent years, the meaning of the term “equilibrium” has undergone such dramatic development that a theorist of the 1930s would not recognize it. It is now routine to describe an economy following a multivariate stochastic process as being “in equilibrium,” by which is meant nothing more than that at each point in time, postulates (a) and (b) above are satisfied. This development, which stemmed mainly from work by K. J. Arrow and G. Debreu, implies that simply to look at any economic time series and conclude that it is a “disequilibrium phenomenon” is a meaningless observation. Indeed, a more likely conjecture, on the basis of recent work by Hugo Sonnenschein, is that the general hypothesis that a collection of time series describes an economy in competitive equilibrium is without content. (pp. 58-59)

Lucas and Sargent maintain that ‘classical” (by which they obviously mean “neoclassical”) economics is based on the twin postulates of (a) market clearing and (b) optimization. But optimization is a postulate about individual conduct or decision making under ideal conditions in which individuals can choose costlessly among alternatives that they can rank. Market clearing is not a postulate about individuals, it is the outcome of a process that neoclassical theory did not, and has not, described in any detail.

Instead of describing the process by which markets clear, neoclassical economic theory provides a set of not too realistic stories about how markets might clear, of which the two best-known stories are the Walrasian auctioneer/tâtonnement story, widely regarded as merely heuristic, if not fantastical, and the clearly heuristic and not-well-developed Marshallian partial-equilibrium story of a “long-run” equilibrium price for each good correctly anticipated by market participants corresponding to the long-run cost of production. However, the cost of production on which the Marhsallian long-run equilibrium price depends itself presumes that a general equilibrium of all other input and output prices has been reached, so it is not an alternative to, but must be subsumed under, the Walrasian general equilibrium paradigm.

Thus, in invoking the neoclassical postulates of market-clearing and optimization, Lucas and Sargent unwittingly, or perhaps wittingly, begged the question how market clearing, which requires that the plans of individual optimizing agents to buy and sell reconciled in such a way that each agent can carry out his/her/their plan as intended, comes about. Rather than explain how market clearing is achieved, they simply assert – and rather loudly – that we must postulate that market clearing is achieved, and thereby submit to the virtuous discipline of equilibrium.

Because they could provide neither empirical evidence that equilibrium is continuously achieved nor a plausible explanation of the process whereby it might, or could be, achieved, Lucas and Sargent try to normalize their insistence that equilibrium is an obligatory postulate that must be accepted by economists by calling it “routine to describe an economy following a multivariate stochastic process as being ‘in equilibrium,’ by which is meant nothing more than that at each point in time, postulates (a) and (b) above are satisfied,” as if the routine adoption of any theoretical or methodological assumption becomes ipso facto justified once adopted routinely. That justification was unacceptable to Lucas and Sargent when made on behalf of “sticky wages” or Keynesian “rules of thumb, but somehow became compelling when invoked on behalf of perpetual “equilibrium” and neoclassical discipline.

Using the authority of Arrow and Debreu to support the normalcy of the assumption that equilibrium is a necessary and continuous property of reality, Lucas and Sargent maintained that it is “meaningless” to conclude that any economic time series is a disequilibrium phenomenon. A proposition ismeaningless if and only if neither the proposition nor its negation is true. So, in effect, Lucas and Sargent are asserting that it is nonsensical to say that an economic time either reflects or does not reflect an equilibrium, but that it is, nevertheless, methodologically obligatory to for any economic model to make that nonsensical assumption.

It is curious that, in making such an outlandish claim, Lucas and Sargent would seek to invoke the authority of Arrow and Debreu. Leave aside the fact that Arrow (1959) himself identified the lack of a theory of disequilibrium pricing as an explanatory gap in neoclassical general-equilibrium theory. But if equilibrium is a necessary and continuous property of reality, why did Arrow and Debreu, not to mention Wald and McKenzie, devoted so much time and prodigious intellectual effort to proving that an equilibrium solution to a system of equations exists. If, as Lucas and Sargent assert (nonsensically), it makes no sense to entertain the possibility that an economy is, or could be, in a disequilibrium state, why did Wald, Arrow, Debreu and McKenzie bother to prove that the only possible state of the world actually exists?

Having invoked the authority of Arrow and Debreu, Lucas and Sargent next invoke the seminal contribution of Sonnenschein (1973), though without mentioning the similar and almost simultaneous contributions of Mantel (1974) and Debreu (1974), to argue that it is empirically empty to argue that any collection of economic time series is either in equilibrium or out of equilibrium. This property has subsequently been described as an “Anything Goes Theorem” (Mas-Colell, Whinston, and Green, 1995).

Presumably, Lucas and Sargent believe the empirically empty hypothesis that a collection of economic time series is, or, alternatively is not, in equilibrium is an argument supporting the methodological imperative of maintaining the assumption that the economy absolutely and necessarily is in a continuous state of equilibrium. But what Sonnenschein (and Mantel and Debreu) showed was that even if the excess demands of all individual agents are continuous, are homogeneous of degree zero, and even if Walras’s Law is satisfied, aggregating the excess demands of all agents would not necessarily cause the aggregate excess demand functions to behave in such a way that a unique or a stable equilibrium. But if we have no good argument to explain why a unique or at least a stable neoclassical general-economic equilibrium exists, on what methodological ground is it possible to insist that no deviation from the admittedly empirically empty and meaningless postulate of necessary and continuous equilibrium may be tolerated by conscientious economic theorists? Or that the gatekeepers of reputable neoclassical economics must enforce appropriate standards of professional practice?

As Franklin Fisher (1989) showed, inability to prove that there is a stable equilibrium leaves neoclassical economics unmoored, because the bread and butter of neoclassical price theory (microeconomics), comparative statics exercises, is conditional on the assumption that there is at least one stable general equilibrium solution for a competitive economy.

But it’s not correct to say that general equilibrium theory in its Arrow-Debreu-McKenzie version is empirically empty. Indeed, it has some very strong implications. There is no money, no banks, no stock market, and no missing markets; there is no advertising, no unsold inventories, no search, no private information, and no price discrimination. There are no surprises and there are no regrets, no mistakes and no learning. I could go on, but you get the idea. As a theory of reality, the ADM general-equilibrium model is simply preposterous. And, yet, this is the model of economic reality on the basis of which Lucas and Sargent proposed to build a useful and relevant theory of macroeconomic fluctuations. OMG!

Lucas, in various writings, has actually disclaimed any interest in providing an explanation of reality, insisting that his only aim is to devise mathematical models capable of accounting for the observed values of the relevant time series of macroeconomic variables. In Lucas’s conception of science, the only criterion for scientific knowledge is the capacity of a theory – an algorithm for generating numerical values to be measured against observed time series – to generate predicted values approximating the observed values of the time series. The only constraint on the algorithm is Lucas’s methodological preference that the algorithm be derived from what he conceives to be an acceptable microfounded version of neoclassical theory: a set of predictions corresponding to the solution of a dynamic optimization problem for a “representative agent.”

In advancing his conception of the role of science, Lucas has reverted to the approach of ancient astronomers who, for methodological reasons of their own, believed that the celestial bodies revolved around the earth in circular orbits. To ensure that their predictions matched the time series of the observed celestial positions of the planets, ancient astronomers, following Ptolemy, relied on epicycles or second-order circular movements of planets while traversing their circular orbits around the earth to account for their observed motions.

Kepler and later Galileo conceived of the solar system in a radically different way from the ancients, placing the sun, not the earth, at the fixed center of the solar system and proposing that the orbits of the planets were elliptical, not circular. For a long time, however, the actual time series of geocentric predictions outperformed the new heliocentric predictions. But even before the heliocentric predictions started to outperform the geocentric predictions, the greater simplicity and greater realism of the heliocentric theory attracted an increasing number of followers, forcing methodological supporters of the geocentric theory to take active measures to suppress the heliocentric theory.

I hold no particular attachment to the pre-Lucasian versions of macroeconomic theory, whether Keynesian, Monetarist, or heterodox. Macroeconomic theory required a grounding in an explicit intertemporal setting that had been lacking in most earlier theories. But the ruthless enforcement, based on a preposterous methodological imperative, lacking scientific or philosophical justification, of formal intertemporal optimization models as the only acceptable form of macroeconomic theorizing has sidetracked macroeconomics from a more relevant inquiry into the nature and causes of intertemporal coordination failures that Keynes, along with many some of his predecessors and contemporaries, had initiated.

Just as the dispute about whether planetary motion is geocentric or heliocentric was a dispute about what the world is like, not just about the capacity of models to generate accurate predictions of time series variables, current macroeconomic disputes are real disputes about what the world is like and whether aggregate economic fluctuations are the result of optimizing equilibrium choices by economic agents or about coordination failures that cause economic agents to be surprised and disappointed and rendered unable to carry out their plans in the manner in which they had hoped and expected to be able to do. It’s long past time for this dispute about reality to be joined openly with the seriousness that it deserves, instead of being suppressed by a spurious pseudo-scientific methodology.

HT: Arash Molavi Vasséi, Brian Albrecht, and Chris Edmonds


[1] Lucas and Sargent are guilty of at least two misrepresentations in this paragraph. First, Keynes did not “found” macroeconomics, though he certainly influenced its development decisively. Keynes used the term “macroeconomics,” and his work, though crucial, explicitly drew upon earlier work by Marshall, Wicksell, Fisher, Pigou, Hawtrey, and Robertson, among others. See Laidler (1999). Second, having explicitly denied and argued at length that his results did not depend on the assumption of sticky wages, Keynes certainly never introduced the assumption of sticky wages himself. See Leijonhufvud (1968)

Robert Lucas and the Pretense of Science

F. A. Hayek entitled his 1974 Nobel Lecture whose principal theme was to attack the simple notion that the long-observed correlation between aggregate demand and employment was a reliable basis for conducting macroeconomic policy, “The Pretence of Knowledge.” Reiterating an argument that he had made over 40 years earlier about the transitory stimulus provided to profits and production by monetary expansion, Hayek was informally anticipating the argument that Robert Lucas famously repackaged two years later in his famous critique of econometric policy evaluation. Hayek’s argument hinged on a distinction between “phenomena of unorganized complexity” and phenomena of organized complexity.” Statistical relationships or correlations between phenomena of disorganized complexity may be relied upon to persist, but observed statistical correlations displayed by phenomena of organized complexity cannot be relied upon without detailed knowledge of the individual elements that constitute the system. It was the facile assumption that observed statistical correlations in systems of organized complexity can be uncritically relied upon in making policy decisions that Hayek dismissed as merely the pretense of knowledge.

Adopting many of Hayek’s complaints about macroeconomic theory, Lucas founded his New Classical approach to macroeconomics on a methodological principle that all macroeconomic models be grounded in the axioms of neoclassical economic theory as articulated in the canonical Arrow-Debreu-McKenzie models of general equilibrium models. Without such grounding in neoclassical axioms and explicit formal derivations of theorems from those axioms, Lucas maintained that macroeconomics could not be considered truly scientific. Forty years of Keynesian macroeconomics were, in Lucas’s view, largely pre-scientific or pseudo-scientific, because they lacked satisfactory microfoundations.

Lucas’s methodological program for macroeconomics was thus based on two basic principles: reductionism and formalism. First, all macroeconomic models not only had to be consistent with rational individual decisions, they had to be reduced to those choices. Second, all the propositions of macroeconomic models had to be explicitly derived from the formal definitions and axioms of neoclassical theory. Lucas demanded nothing less than the explicit assumption individual rationality in every macroeconomic model and that all decisions by agents in a macroeconomic model be individually rational.

In practice, implementing Lucasian methodological principles required that in any macroeconomic model all agents’ decisions be derived within an explicit optimization problem. However, as Hayek had himself shown in his early studies of business cycles and intertemporal equilibrium, individual optimization in the standard Walrasian framework, within which Lucas wished to embed macroeconomic theory, is possible only if all agents are optimizing simultaneously, all individual decisions being conditional on the decisions of other agents. Individual optimization can only be solved simultaneously for all agents, not individually in isolation.

The difficulty of solving a macroeconomic equilibrium model for the simultaneous optimal decisions of all the agents in the model led Lucas and his associates and followers to a strategic simplification: reducing the entire model to a representative agent. The optimal choices of a single agent would then embody the consumption and production decisions of all agents in the model.

The staggering simplification involved in reducing a purported macroeconomic model to a representative agent is obvious on its face, but the sleight of hand being performed deserves explicit attention. The existence of an equilibrium solution to the neoclassical system of equations was assumed, based on faulty reasoning by Walras, Fisher and Pareto who simply counted equations and unknowns. A rigorous proof of existence was only provided by Abraham Wald in 1936 and subsequently in more general form by Arrow, Debreu and McKenzie, working independently, in the 1950s. But proving the existence of a solution to the system of equations does not establish that an actual neoclassical economy would, in fact, converge on such an equilibrium.

Neoclassical theory was and remains silent about the process whereby equilibrium is, or could be, reached. The Marshallian branch of neoclassical theory, focusing on equilibrium in individual markets rather than the systemic equilibrium, is often thought to provide an account of how equilibrium is arrived at, but the Marshallian partial-equilibrium analysis presumes that all markets and prices except the price in the single market under analysis, are in a state of equilibrium. So the Marshallian approach provides no more explanation of a process by which a set of equilibrium prices for an entire economy is, or could be, reached than the Walrasian approach.

Lucasian methodology has thus led to substituting a single-agent model for an actual macroeconomic model. It does so on the premise that an economic system operates as if it were in a state of general equilibrium. The factual basis for this premise apparently that it is possible, using versions of a suitable model with calibrated coefficients, to account for observed aggregate time series of consumption, investment, national income, and employment. But the time series derived from these models are derived by attributing all observed variations in national income to unexplained shocks in productivity, so that the explanation provided is in fact an ex-post rationalization of the observed variations not an explanation of those variations.

Nor did Lucasian methodology have a theoretical basis in received neoclassical theory. In a famous 1960 paper “Towards a Theory of Price Adjustment,” Kenneth Arrow identified the explanatory gap in neoclassical theory: the absence of a theory of price change in competitive markets in which every agent is a price taker. The existence of an equilibrium does not entail that the equilibrium will be, or is even likely to be, found. The notion that price flexibility is somehow a guarantee that market adjustments reliably lead to an equilibrium outcome is a presumption or a preconception, not the result of rigorous analysis.

However, Lucas used the concept of rational expectations, which originally meant no more than that agents try to use all available information to anticipate future prices, to make the concept of equilibrium, notwithstanding its inherent implausibility, a methodological necessity. A rational-expectations equilibrium was methodologically necessary and ruthlessly enforced on researchers, because it was presumed to be entailed by the neoclassical assumption of rationality. Lucasian methodology transformed rational expectations into the proposition that all agents form identical, and correct, expectations of future prices based on the same available information (common knowledge). Because all agents reach the same, correct expectations of future prices, general equilibrium is continuously achieved, except at intermittent moments when new information arrives and is used by agents to revise their expectations.

In his Nobel Lecture, Hayek decried a pretense of knowledge about correlations between macroeconomic time series that lack a foundation in the deeper structural relationships between those related time series. Without an understanding of the deeper structural relationships between those time series, observed correlations cannot be relied on when formulating economic policies. Lucas’s own famous critique echoed the message of Hayek’s lecture.

The search for microfoundations was always a natural and commendable endeavor. Scientists naturally try to reduce higher-level theories to deeper and more fundamental principles. But the endeavor ought to be conducted as a theoretical and empirical endeavor. If successful, the reduction of the higher-level theory to a deeper theory will provide insight and disclose new empirical implications to both the higher-level and the deeper theories. But reduction by methodological fiat accomplishes neither and discourages the research that might actually achieve a theoretical reduction of a higher-level theory to a deeper one. Similarly, formalism can provide important insights into the structure of theories and disclose gaps or mistakes the reasoning underlying the theories. But most important theories, even in pure mathematics, start out as informal theories that only gradually become axiomatized as logical gaps and ambiguities in the theories are discovered and filled or refined.

The resort to the reductionist and formalist methodological imperatives with which Lucas and his followers have justified their pretentions to scientific prestige and authority, and have used that authority to compel compliance with those imperatives, only belie their pretensions.

More on Arrow’s Explanatory Gap and the Milgrom-Stokey Argument

In my post yesterday, I discussed what I call Kenneth Arrow’s explanatory gap: the absence of any account in neoclassical economic theory of how the equilibrium price vector is actually arrived at and how changes in that equilibrium price vector result when changes in underlying conditions imply changes in equilibrium prices. I post below some revisions to several paragraphs in yesterday’s post supplemented by a more detailed discussion of the Milgrom-Stokey “no-trade theorem” and its significance. The following is drawn from a work in progress to be presented later this month at a conference celebrating the 150th anniversary of the publication of the Carl Menger’s Grundsätze der Volkswirtschaftslehre.

Thus, just twenty years after Arrow called attention to the explanatory gap in neoclassical theory by observing that neoclassical theory provides no explanation of how competitive prices can change, Paul Milgrom and Nancy Stokey (1982) turned Arrow’s argument on its head by arguing that, under rational expectations, no trading would ever occur at disequilibrium prices, because every potential trader would realize that an offer to trade at disequilibrium prices would not be made unless the offer was based on private knowledge and would therefore lead to a wealth transfer to the trader relying on private knowledge. Because no traders with rational expectations would agree to a trade at a disequilibrium price, there would be no incentive to seek or exploit private information, and all trades would occur at equilibrium prices.

This would have been a profound and important argument had it been made as a reductio ad absurdum to show the untenability of the rational-expectations as a theory of expectation formation, inasmuch as it leads to the obviously false factual implication that private information is never valuable and that no profitable trades are made by those possessed of private information. In concluding their paper, Milgrom and Stokey (1982) acknowledge the troubling implication of their argument:

Our results concerning rational expectations market equilibria raise anew the disturbing questions expressed by Beja (1977), Grossman and Stiglitz (1980), and Tirole (1980): Why do traders bother to gather information if they cannot profit from it? How does information come to be reflected in prices if informed traders do not trade or if they ignore their private information in making inferences? These questions can be answered satisfactorily only in the context of models of the price formation process; and our central result, the no-trade theorem, applies to all such models when rational expectations are assumed. (p. 17)

What Milgrom and Stokey seem not to have grasped is that the rational-expectations assumption dispenses with the need for a theory of price formation, inasmuch as every agent is assumed to be able to calculate what the equilibrium price is. They attempt to mitigate the extreme nature of this assumption by arguing that by observing price changes, traders can infer what changes in common knowledge would have implied the observed changes. That argument seems insufficient because any given change in price could be caused by more than one potential cause. As Scott Sumner has often argued, one can’t reason from a price change. If one doesn’t have independent knowledge of the cause of the price change, one can’t use the price change as a basis for further inference.

The Explanatory Gap and Mengerian Subjectivism

My last several posts have been focused on Marshall and Walras and the relationships and differences between the partial equilibrium approach of Marshall and the general-equilibrium approach of Walras and how that current state of neoclassical economics is divided between the more practical applied approach of Marshallian partial-equilibrium analysis and the more theoretical general-equilibrium approach of Walras. The divide is particularly important for the history of macroeconomics, because many of the macroeconomic controversies in the decades since Keynes have also involved differences between Marshallians and Walrasians. I’m not happy with either the Marshallian or Walrasian approach, and I have been trying to articulate my unhappiness with both branches of current neoclassical thinking by going back to the work of the forgotten marginal revolutionary, Carl Menger. I’ve been writing a paper for a conference later this month celebrating the 150th anniversary of Menger’s great work which draws on some of my recent musings, because I think it offers at least some hints at how to go about developing an improved neoclassical theory. Here’s a further sampling of my thinking which is drawn from one of the sections of my work in progress.

Both the Marshallian and the Walrasian versions of equilibrium analysis have failed to bridge an explanatory gap between the equilibrium state, whose existence is crucial for such empirical content as can be claimed on behalf of those versions of neoclassical theory, and such an equilibrium state could ever be attained. The gap was identified by one of the chief architects of modern neoclassical theory, Kenneth Arrow, in his 1958 paper “Toward a Theory of Price Adjustment.”

The equilibrium is defined in terms of a set of prices. In the Marshallian version, the equilibrium prices are assumed to have already been determined in all but a single market (or perhaps a subset of closely related markets), so that the Marshallian equilibrium simply represents how, in a single small or isolated market, an equilibrium price in that market is determined, under suitable ceteris-paribus conditions thereby leaving the equilibrium prices determined in other markets unaffected.

In the Walrasian version, all prices in all markets are determined simultaneously, but the method for determining those prices simultaneously was not spelled out by Walras other than by reference to the admittedly fictitious and purely heuristic tâtonnement process.

Both the Marshallian and Walrasian versions can show that equilibrium has optimal properties, but neither version can explain how the equilibrium is reached or how it can be discovered in practice. This is true even in the single-period context in which the Walrasian and Marshallian equilibrium analyses were originally carried out.

The single-period equilibrium has been extended, at least in a formal way, in the standard Arrow-Debreu-McKenzie (ADM) version of the Walrasian equilibrium, but this version is in important respects just an enhanced version of a single-period model inasmuch as all trades take place at time zero in a complete array of future state-contingent markets. So it is something of a stretch to consider the ADM model a truly intertemporal model in which the future can unfold in potentially surprising ways as opposed to just playing out a script already written in which agents go through the motions of executing a set of consistent plans to produce, purchase and sell in a sequence of predetermined actions.

Under less extreme assumptions than those of the ADM model, an intertemporal equilibrium involves both equilibrium current prices and equilibrium expected prices, and just as the equilibrium current prices are the same for all agents, equilibrium expected future prices must be equal for all agents. In his 1937 exposition of the concept of intertemporal equilibrium, Hayek explained the difference between what agents are assumed to know in a state of intertemporal equilibrium and what they are assumed to know in a single-period equilibrium.

If all agents share common knowledge, it may be plausible to assume that they will rationally arrive at similar expectations of the future prices. But if their stock of knowledge consists of both common knowledge and private knowledge, then it seems implausible to assume that the price expectations of different agents will always be in accord. Nevertheless, it is not necessarily inconceivable, though perhaps improbable, that agents will all arrive at the same expectations of future prices.

In the single-period equilibrium, all agents share common knowledge of equilibrium prices of all commodities. But in intertemporal equilibrium, agents lack knowledge of the future, but can only form expectations of future prices derived from their own, more or less accurate, stock of private knowledge. However, an equilibrium may still come about if, based on their private knowledge, they arrive at sufficiently similar expectations of future prices for their plans for their current and future purchases and sales to be mutually compatible.

Thus, just twenty years after Arrow called attention to the explanatory gap in neoclassical theory by observing that there is no neoclassical theory of how competitive prices can change, Milgrom and Stokey turned Arrow’s argument on its head by arguing that, under rational expectations, no trading would ever occur at prices other than equilibrium prices, so that it would be impossible for a trader with private information to take advantage of that information. This argument seems to suffer from a widely shared misunderstanding of what rational expectations signify.

Thus, in the Mengerian view articulated by Hayek, intertemporal equilibrium, given the diversity of private knowledge and expectations, is an unlikely, but not inconceivable, state of affairs, a view that stands in sharp contrast to the argument of Paul Milgrom and Nancy Stokey (1982), in which they argue that under a rational-expectations equilibrium there is no private knowledge, only common knowledge, and that it would be impossible for any trader to trade on private knowledge, because no other trader with rational expectations would be willing to trade with anyone at a price other than the equilibrium price.

Rational expectations is not a property of individual agents making rational and efficient use of the information from whatever source it is acquired. As I have previously explained here (and a revised version here) rational expectations is a property of intertemporal equilibrium; it is not an intrinsic property that agents have by virtue of being rational, just as the fact that the three angles in a triangle sum to 180 degrees is not a property of the angles qua angles, but a property of the triangle. When the expectations that agents hold about future prices are identical, their expectations are equilibrium expectations and they are rational. That the agents hold rational expectations in equilibrium, does not mean that the agents are possessed of the power to calculate equilibrium prices or even to know if their expectations of future prices are equilibrium expectations. Equilibrium is the cause of rational expectations; rational expectations do not exist if the conditions for equilibrium aren’t satisfied. See Blume, Curry and Easley (2006).

The assumption, now routinely regarded as axiomatic, that rational expectations is sufficient to ensure that equilibrium is automatic achieved, and that agents’ price expectations necessarily correspond to equilibrium price expectations is a form of question begging disguised as a methodological imperative that requires all macroeconomic models to be properly microfounded. The newly published volume edited by Arnon, Young and van der Beek Expectations: Theory and Applications from Historical Perspectives contains a wonderful essay by Duncan Foley that elucidates these issues.

In his centenary retrospective on Menger’s contribution, Hayek (1970), commenting on the inexactness of Menger’s account of economic theory, focused on Menger’s reluctance to embrace mathematics as an expository medium with which to articulate economic-theoretical concepts. While this may have been an aspect of Menger’s skepticism about mathematical reasoning, his recognition that expectations of the future are inherently inexact and conjectural and more akin to a range of potential outcomes of different probability may have been an even more significant factor in how Menger chose to articulate his theoretical vision.

But it is noteworthy that Hayek (1937) explicitly recognized that there is no theoretical explanation that accounts for any tendency toward intertemporal equilibrium, and instead merely (and in 1937!) relied an empirical tendency of economies to move in the direction of equilibrium as a justification for considering economic theory to have any practical relevance.

General Equilibrium, Partial Equilibrium and Costs

Neoclassical economics is now bifurcated between Marshallian partial-equilibrium and Walrasian general-equilibrium analyses. With the apparent inability of neoclassical theory to explain the coordination failure of the Great Depression, J. M. Keynes proposed an alternative paradigm to explain the involuntary unemployment of the 1930s. But within two decades, Keynes’s contribution was subsumed under what became known as the neoclassical synthesis of the Keynesian and Walrasian theories (about which I have written frequently, e.g., here and here). Lacking microfoundations that could be reconciled with the assumptions of Walrasian general-equilibrium theory, the neoclassical synthesis collapsed, owing to the supposedly inadequate microfoundations of Keynesian theory.

But Walrasian general-equilibrium theory provides no plausible, much less axiomatic, account of how general equilibrium is, or could be, achieved. Even the imaginary tatonnement process lacks an algorithm that guarantees that a general-equilibrium solution, if it exists, would be found. Whatever plausibility is attributed to the assumption that price flexibility leads to equilibrium derives from Marshallian partial-equilibrium analysis, with market prices adjusting to equilibrate supply and demand.

Yet modern macroeconomics, despite its explicit Walrasian assumptions, implicitly relies on the Marshallian intuition that the fundamentals of general-equilibrium, prices and costs are known to agents who, except for random disturbances, continuously form rational expectations of market-clearing equilibrium prices in all markets.

I’ve written many earlier posts (e.g., here and here) contesting, in one way or another, the notion that all macroeconomic theories must be founded on first principles (i.e., microeconomic axioms about optimizing individuals). Any macroeconomic theory not appropriately founded on the axioms of individual optimization by consumers and producers is now dismissed as scientifically defective and unworthy of attention by serious scientific practitioners of macroeconomics.

When contesting the presumed necessity for macroeconomics to be microeconomically founded, I’ve often used Marshall’s partial-equilibrium method as a point of reference. Though derived from underlying preference functions that are independent of prices, the demand curves of partial-equilibrium analysis presume that all product prices, except the price of the product under analysis, are held constant. Similarly, the supply curves are derived from individual firm marginal-cost curves whose geometric position or algebraic description depends critically on the prices of raw materials and factors of production used in the production process. But neither the prices of alternative products to be purchased by consumers nor the prices of raw materials and factors of production are given independently of the general-equilibrium solution of the whole system.

Thus, partial-equilibrium analysis, to be analytically defensible, requires a ceteris-paribus proviso. But to be analytically tenable, that proviso must posit an initial position of general equilibrium. Unless the analysis starts from a state of general equilibrium, the assumption that all prices but one remain constant can’t be maintained, the constancy of disequilibrium prices being a nonsensical assumption.

The ceteris-paribus proviso also entails an assumption about the market under analysis; either the market itself, or the disturbance to which it’s subject, must be so small that any change in the equilibrium price of the product in question has de minimus repercussions on the prices of every other product and of every input and factor of production used in producing that product. Thus, the validity of partial-equilibrium analysis depends on the presumption that the unique and locally stable general-equilibrium is approximately undisturbed by whatever changes result from by the posited change in the single market being analyzed. But that presumption is not so self-evidently plausible that our reliance on it to make empirical predictions is always, or even usually, justified.

Perhaps the best argument for taking partial-equilibrium analysis seriously is that the analysis identifies certain deep structural tendencies that, at least under “normal” conditions of moderate macroeconomic stability (i.e., moderate unemployment and reasonable price stability), will usually be observable despite the disturbing influences that are subsumed under the ceteris-paribus proviso. That assumption — an assumption of relative ignorance about the nature of the disturbances that are assumed to be constant — posits that those disturbances are more or less random, and as likely to cause errors in one direction as another. Consequently, the predictions of partial-equilibrium analysis can be assumed to be statistically, though not invariably, correct.

Of course, the more interconnected a given market is with other markets in the economy, and the greater its size relative to the total economy, the less confidence we can have that the implications of partial-equilibrium analysis will be corroborated by empirical investigation.

Despite its frequent unsuitability, economists and commentators are often willing to deploy partial-equilibrium analysis in offering policy advice even when the necessary ceteris-paribus proviso of partial-equilibrium analysis cannot be plausibly upheld. For example, two of the leading theories of the determination of the rate of interest are the loanable-funds doctrine and the Keynesian liquidity-preference theory. Both these theories of the rate of interest suppose that the rate of interest is determined in a single market — either for loanable funds or for cash balances — and that the rate of interest adjusts to equilibrate one or the other of those two markets. But the rate of interest is an economy-wide price whose determination is an intertemporal-general-equilibrium phenomenon that cannot be reduced, as the loanable-funds and liquidity preference theories try to do, to the analysis of a single market.

Similarly partial-equilibrium analysis of the supply of, and the demand for, labor has been used of late to predict changes in wages from immigration and to advocate for changes in immigration policy, while, in an earlier era, it was used to recommend wage reductions as a remedy for persistently high aggregate unemployment. In the General Theory, Keynes correctly criticized those using a naïve version of the partial-equilibrium method to recommend curing high unemployment by cutting wage rates, correctly observing that the conditions for full employment required the satisfaction of certain macroeconomic conditions for equilibrium that would not necessarily be satisfied by cutting wages.

However, in the very same volume, Keynes argued that the rate of interest is determined exclusively by the relationship between the quantity of money and the demand to hold money, ignoring that the rate of interest is an intertemporal relationship between current and expected future prices, an insight earlier explained by Irving Fisher that Keynes himself had expertly deployed in his Tract on Monetary Reform and elsewhere (Chapter 17) in the General Theory itself.

Evidently, the allure of supply-demand analysis can sometimes be too powerful for well-trained economists to resist even when they actually know better themselves that it ought to be resisted.

A further point also requires attention: the conditions necessary for partial-equilibrium analysis to be valid are never really satisfied; firms don’t know the costs that determine the optimal rate of production when they actually must settle on a plan of how much to produce, how much raw materials to buy, and how much labor and other factors of production to employ. Marshall, the originator of partial-equilibrium analysis, analogized supply and demand to the blades of a scissor acting jointly to achieve a intended result.

But Marshall erred in thinking that supply (i.e., cost) is an independent determinant of price, because the equality of costs and prices is a characteristic of general equilibrium. It can be applied to partial-equilibrium analysis only under the ceteris-paribus proviso that situates partial-equilibrium analysis in a pre-existing general equilibrium of the entire economy. It is only in general-equilibrium state, that the cost incurred by a firm in producing its output represents the value of the foregone output that could have been produced had the firm’s output been reduced. Only if the analyzed market is so small that changes in how much firms in that market produce do not affect the prices of the inputs used in to produce that output can definite marginal-cost curves be drawn or algebraically specified.

Unless general equilibrium obtains, prices need not equal costs, as measured by the quantities and prices of inputs used by firms to produce any product. Partial equilibrium analysis is possible only if carried out in the context of general equilibrium. Cost cannot be an independent determinant of prices, because cost is itself determined simultaneously along with all other prices.

But even aside from the reasons why partial-equilibrium analysis presumes that all prices, but the price in the single market being analyzed, are general-equilibrium prices, there’s another, even more problematic, assumption underlying partial-equilibrium analysis: that producers actually know the prices that they will pay for the inputs and resources to be used in producing their outputs. The cost curves of the standard economic analysis of the firm from which the supply curves of partial-equilibrium analysis are derived, presume that the prices of all inputs and factors of production correspond to those that are consistent with general equilibrium. But general-equilibrium prices are never known by anyone except the hypothetical agents in a general-equilibrium model with complete markets, or by agents endowed with perfect foresight (aka rational expectations in the strict sense of that misunderstood term).

At bottom, Marshallian partial-equilibrium analysis is comparative statics: a comparison of two alternative (hypothetical) equilibria distinguished by some difference in the parameters characterizing the two equilibria. By comparing the equilibria corresponding to the different parameter values, the analyst can infer the effect (at least directionally) of a parameter change.

But comparative-statics analysis is subject to a serious limitation: comparing two alternative hypothetical equilibria is very different from making empirical predictions about the effects of an actual parameter change in real time.

Comparing two alternative equilibria corresponding to different values of a parameter may be suggestive of what could happen after a policy decision to change that parameter, but there are many reasons why the change implied by the comparative-statics exercise might not match or even approximate the actual change.

First, the initial state was almost certainly not an equilibrium state, so systemic changes will be difficult, if not impossible, to disentangle from the effect of parameter change implied by the comparative-statics exercise.

Second, even if the initial state was an equilibrium, the transition to a new equilibrium is never instantaneous. The transitional period therefore leads to changes that in turn induce further systemic changes that cause the new equilibrium toward which the system gravitates to differ from the final equilibrium of the comparative-statics exercise.

Third, each successive change in the final equilibrium toward which the system is gravitating leads to further changes that in turn keep changing the final equilibrium. There is no reason why the successive changes lead to convergence on any final equilibrium end state. Nor is there any theoretical proof that the adjustment path leading from one equilibrium to another ever reaches an equilibrium end state. The gap between the comparative-statics exercise and the theory of adjustment in real time remains unbridged and may, even in principle, be unbridgeable.

Finally, without a complete system of forward and state-contingent markets, equilibrium requires not just that current prices converge to equilibrium prices; it requires that expectations of all agents about future prices converge to equilibrium expectations of future prices. Unless, agents’ expectations of future prices converge to their equilibrium values, an equilibrium many not even exist, let alone be approached or attained.

So the Marshallian assumption that producers know their costs of production and make production and pricing decisions based on that knowledge is both factually wrong and logically untenable. Nor do producers know what the demand curves for their products really looks like, except in the extreme case in which suppliers take market prices to be parametrically determined. But even then, they make decisions not on known prices, but on expected prices. Their expectations are constantly being tested against market information about actual prices, information that causes decision makers to affirm or revise their expectations in light of the constant flow of new information about prices and market conditions.

I don’t reject partial-equilibrium analysis, but I do call attention to its limitations, and to its unsuitability as a supposedly essential foundation for macroeconomic analysis, especially inasmuch as microeconomic analysis, AKA partial-equilibrium analysis, is utterly dependent on the uneasy macrofoundation of general-equilibrium theory. The intuition of Marshallian partial equilibrium cannot fil the gap, long ago noted by Kenneth Arrow, in the neoclassical theory of equilibrium price adjustment.

A Tale of Two Syntheses

I recently finished reading a slender, but weighty, collection of essays, Microfoundtions Reconsidered: The Relationship of Micro and Macroeconomics in Historical Perspective, edited by Pedro Duarte and Gilberto Lima; it contains in addition to a brief introductory essay by the editors, and contributions by Kevin Hoover, Robert Leonard, Wade Hands, Phil Mirowski, Michel De Vroey, and Pedro Duarte. The volume is both informative and stimulating, helping me to crystalize ideas about which I have been ruminating and writing for a long time, but especially in some of my more recent posts (e.g., here, here, and here) and my recent paper “Hayek, Hicks, Radner and Four Equilibrium Concepts.”

Hoover’s essay provides a historical account of the microfoundations, making clear that the search for microfoundations long preceded the Lucasian microfoundations movement of the 1970s and 1980s that would revolutionize macroeconomics in the late 1980s and early 1990s. I have been writing about the differences between varieties of microfoundations for quite a while (here and here), and Hoover provides valuable detail about early discussions of microfoundations and about their relationship to the now regnant Lucasian microfoundations dogma. But for my purposes here, Hoover’s key contribution is his deconstruction of the concept of microfoundations, showing that the idea of microfoundations depends crucially on the notion that agents in a macroeconomic model be explicit optimizers, meaning that they maximize an explicit function subject to explicit constraints.

What Hoover clarifies is vacuity of the Lucasian optimization dogma. Until Lucas, optimization by agents had been merely a necessary condition for a model to be microfounded. But there was also another condition: that the optimizing choices of agents be mutually consistent. Establishing that the optimizing choices of agents are mutually consistent is not necessarily easy or even possible, so often the consistency of optimizing plans can only be suggested by some sort of heuristic argument. But Lucas and his cohorts, followed by their acolytes, unable to explain, even informally or heuristically, how the optimizing choices of individual agents are rendered mutually consistent, instead resorted to question-begging and question-dodging techniques to avoid addressing the consistency issue, of which one — the most egregious, but not the only — is the representative agent. In so doing, Lucas et al. transformed the optimization problem from the coordination of multiple independent choices into the optimal plan of a single decision maker. Heckuva job!

The second essay by Robert Leonard, though not directly addressing the question of microfoundations, helps clarify and underscore the misrepresentation perpetrated by the Lucasian microfoundational dogma in disregarding and evading the need to describe a mechanism whereby the optimal choices of individual agents are, or could be, reconciled. Leonard focuses on a particular economist, Oskar Morgenstern, who began his career in Vienna as a not untypical adherent of the Austrian school of economics, a member of the Mises seminar and successor of F. A. Hayek as director of the Austrian Institute for Business Cycle Research upon Hayek’s 1931 departure to take a position at the London School of Economics. However, Morgenstern soon began to question the economic orthodoxy of neoclassical economic theory and its emphasis on the tendency of economic forces to reach a state of equilibrium.

In his famous early critique of the foundations of equilibrium theory, Morgenstern tried to show that the concept of perfect foresight, upon which, he alleged, the concept of equilibrium rests, is incoherent. To do so, Morgenstern used the example of the Holmes-Moriarity interaction in which Holmes and Moriarty are caught in a dilemma in which neither can predict whether the other will get off or stay on the train on which they are both passengers, because the optimal choice of each depends on the choice of the other. The unresolvable conflict between Holmes and Moriarty, in Morgenstern’s view, showed that the incoherence of the idea of perfect foresight.

As his disillusionment with orthodox economic theory deepened, Morgenstern became increasingly interested in the potential of mathematics to serve as a tool of economic analysis. Through his acquaintance with the mathematician Karl Menger, the son of Carl Menger, founder of the Austrian School of economics. Morgenstern became close to Menger’s student, Abraham Wald, a pure mathematician of exceptional ability, who, to support himself, was working on statistical and mathematical problems for the Austrian Institute for Business Cycle Resarch, and tutoring Morgenstern in mathematics and its applications to economic theory. Wald, himself, went on to make seminal contributions to mathematical economics and statistical analysis.

Moregenstern also became acquainted with another student of Menger, John von Neumnn, with an interest in applying advanced mathematics to economic theory. Von Neumann and Morgenstern would later collaborate in writing The Theory of Games and Economic Behavior, as a result of which Morgenstern came to reconsider his early view of the Holmes-Moriarty paradox inasmuch as it could be shown that an equilibrium solution of their interaction could be found if payoffs to their joint choices were specified, thereby enabling Holmes and Moriarty to choose optimal probablistic strategies.

I don’t think that the game-theoretic solution to the Holmes Moriarty game is as straightforward as Morgenstern eventually agreed, but the critical point in the microfoundations discussion is that the mathematical solution to the Holmes-Moriarty paradox acknowledges the necessity for the choices made by two or more agents in an economic or game-theoretic equilibrium to be reconciled – i.e., rendered mutually consistent — in equilibrium. Under Lucasian microfoundations dogma, the problem is either annihilated by positing an optimizing representative agent having no need to coordinate his decision with other agents (I leave the question who, in the Holmes-Moriarty interaction, is the representative agent as an exercise for the reader) or it is assumed away by positing the existence of a magical equilibrium with no explanation of how the mutually consistent choices are arrived at.

The third essay (“The Rise and Fall of Walrasian Economics: The Keynes Effect”) by Wade Hands considers the first of the two syntheses – the neoclassical synthesis — that are alluded to in the title of this post. Hands gives a learned account of the mutually reinforcing co-development of Walrasian general equilibrium theory and Keynesian economics in the 25 years or so following World War II. Although Hands agrees that there is no necessary connection between Walrasian GE theory and Keynesian theory, he argues that there was enough common ground between Keynesians and Walrasians, as famously explained by Hicks in summarizing Keynesian theory by way of his IS-LM model, to allow the two disparate research programs to nourish each other in a kind of symbiotic relationship as the two research programs came to dominate postwar economics.

The task for Keynesian macroeconomists following the lead of Samuelson, Solow and Modigliani at MIT, Alvin Hansen at Harvard and James Tobin at Yale was to elaborate the Hicksian IS-LM approach by embedding it in a more general Walrasian framework. In so doing, they helped to shape a research agenda for Walrasian general-equilibrium theorists working out the details of the newly developed Arrow-Debreu model, deriving conditions for the uniqueness and stability of the equilibrium of that model. The neoclassical synthesis followed from those efforts, achieving an uneasy reconciliation between Walrasian general equilibrium theory and Keynesian theory. It received its most complete articulation in the impressive treatise of Don Patinkin which attempted to derive or at least evaluate key Keyensian propositions in the context of a full general equilibrium model. At an even higher level of theoretical sophistication, the 1971 summation of general equilibrium theory by Arrow and Hahn, gave disproportionate attention to Keynesian ideas which were presented and analyzed using the tools of state-of-the art Walrasian analysis.

Hands sums up the coexistence of Walrasian and Keynesian ideas in the Arrow-Hahn volume as follows:

Arrow and Hahn’s General Competitive Analysis – the canonical summary of the literature – dedicated far more pages to stability than to any other topic. The book had fourteen chapters (and a number of mathematical appendices); there was one chapter on consumer choice, one chapter on production theory, and one chapter on existence [of equilibrium], but there were three chapters on stability analysis, (two on the traditional tatonnement and one on alternative ways of modeling general equilibrium dynamics). Add to this the fact that there was an important chapter on “The Keynesian Model’; and it becomes clear how important stability analysis and its connection to Keynesian economics was for Walrasian microeconomics during this period. The purpose of this section has been to show that that would not have been the case if the Walrasian economics of the day had not been a product of co-evolution with Keynesian economic theory. (p. 108)

What seems most unfortunate about the neoclassical synthesis is that it elevated and reinforced the least relevant and least fruitful features of both the Walrasian and the Keynesian research programs. The Hicksian IS-LM setup abstracted from the dynamic and forward-looking aspects of Keynesian theory, modeling a static one-period model, not easily deployed as a tool of dynamic analysis. Walrasian GE analysis, which, following the pathbreaking GE existence proofs of Arrow and Debreu, then proceeded to a disappointing search for the conditions for a unique and stable general equilibrium.

It was Paul Samuelson who, building on Hicks’s pioneering foray into stability analysis, argued that the stability question could be answered by investigating whether a system of Lyapounov differential equations could describe market price adjustments as functions of market excess demands that would converge on an equilibrium price vector. But Samuelson’s approach to establishing stability required the mechanism of a fictional tatonnement process. Even with that unsatisfactory assumption, the stability results were disappointing.

Although for Walrasian theorists the results hardly repaid the effort expended, for those Keynesians who interpreted Keynes as an instability theorist, the weak Walrasian stability results might have been viewed as encouraging. But that was not any easy route to take either, because Keynes had also argued that a persistent unemployment equilibrium might be the norm.

It’s also hard to understand how the stability of equilibrium in an imaginary tatonnement process could ever have been considered relevant to the operation of an actual economy in real time – a leap of faith almost as extraordinary as imagining an economy represented by a single agent. Any conventional comparative-statics exercise – the bread and butter of microeconomic analysis – involves comparing two equilibria, corresponding to a specified parametric change in the conditions of the economy. The comparison presumes that, starting from an equilibrium position, the parametric change leads from an initial to a new equilibrium. If the economy isn’t stable, a disturbance causing an economy to depart from an initial equilibrium need not result in an adjustment to a new equilibrium comparable to the old one.

If conventional comparative statics hinges on an implicit stability assumption, it’s hard to see how a stability analysis of tatonnement has any bearing on the comparative-statics routinely relied upon by economists. No actual economy ever adjusts to a parametric change by way of tatonnement. Whether a parametric change displacing an economy from its equilibrium time path would lead the economy toward another equilibrium time path is another interesting and relevant question, but it’s difficult to see what insight would be gained by proving the stability of equilibrium under a tatonnement process.

Moreover, there is a distinct question about the endogenous stability of an economy: are there endogenous tendencies within an economy that lead it away from its equilibrium time path. But questions of endogenous stability can only be posed in a dynamic, rather than a static, model. While extending the Walrasian model to include an infinity of time periods, Arrow and Debreu telescoped determination of the intertemporal-equilibrium price vector into a preliminary time period before time, production, exchange and consumption begin. So, even in the formally intertemporal Arrow-Debreu model, the equilibrium price vector, once determined, is fixed and not subject to revision. Standard stability analysis was concerned with the response over time to changing circumstances only insofar as changes are foreseen at time zero, before time begins, so that they can be and are taken fully into account when the equilibrium price vector is determined.

Though not entirely uninteresting, the intertemporal analysis had little relevance to the stability of an actual economy operating in real time. Thus, neither the standard Keyensian (IS-LM) model nor the standard Walrasian Arrow-Debreu model provided an intertemporal framework within which to address the dynamic stability that Keynes (and contemporaries like Hayek, Myrdal, Lindahl and Hicks) had developed in the 1930s. In particular, Hicks’s analytical device of temporary equilibrium might have facilitated such an analysis. But, having introduced his IS-LM model two years before publishing his temporary equilibrium analysis in Value and Capital, Hicks concentrated his attention primarily on Keynesian analysis and did not return to the temporary equilibrium model until 1965 in Capital and Growth. And it was IS-LM that became, for a generation or two, the preferred analytical framework for macroeconomic analysis, while temproary equilibrium remained overlooked until the 1970s just as the neoclassical synthesis started coming apart.

The fourth essay by Phil Mirowski investigates the role of the Cowles Commission, based at the University of Chicago from 1939 to 1955, in undermining Keynesian macroeconomics. While Hands argues that Walrasians and Keynesians came together in a non-hostile spirit of tacit cooperation, Mirowski believes that owing to their Walrasian sympathies, the Cowles Committee had an implicit anti-Keynesian orientation and was therefore at best unsympathetic if not overtly hostile to Keynesian theorizing, which was incompatible the Walrasian optimization paradigm endorsed by the Cowles economists. (Another layer of unexplored complexity is the tension between the Walrasianism of the Cowles economists and the Marshallianism of the Chicago School economists, especially Knight and Friedman, which made Chicago an inhospitable home for the Cowles Commission and led to its eventual departure to Yale.)

Whatever differences, both the Mirowski and the Hands essays support the conclusion that the uneasy relationship between Walrasianism and Keynesianism was inherently problematic and unltimately unsustainable. But to me the tragedy is that before the fall, in the 1950s and 1960s, when the neoclassical synthesis bestrode economics like a colossus, the static orientation of both the Walrasian and the Keynesian research programs combined to distract economists from a more promising research program. Such a program, instead of treating expectations either as parametric constants or as merely adaptive, based on an assumed distributed lag function, might have considered whether expectations could perform a potentially equilibrating role in a general equilibrium model.

The equilibrating role of expectations, though implicit in various contributions by Hayek, Myrdal, Lindahl, Irving Fisher, and even Keynes, is contingent so that equilibrium is not inevitable, only a possibility. Instead, the introduction of expectations as an equilibrating variable did not occur until the mid-1970s when Robert Lucas, Tom Sargent and Neil Wallace, borrowing from John Muth’s work in applied microeconomics, introduced the idea of rational expectations into macroeconomics. But in introducing rational expectations, Lucas et al. made rational expectations not the condition of a contingent equilibrium but an indisputable postulate guaranteeing the realization of equilibrium without offering any theoretical account of a mechanism whereby the rationality of expectations is achieved.

The fifth essay by Michel DeVroey (“Microfoundations: a decisive dividing line between Keynesian and new classical macroeconomics?”) is a philosophically sophisticated analysis of Lucasian microfoundations methodological principles. DeVroey begins by crediting Lucas with the revolution in macroeconomics that displaced a Keynesian orthodoxy already discredited in the eyes of many economists after its failure to account for simultaneously rising inflation and unemployment.

The apparent theoretical disorder characterizing the Keynesian orthodoxy and its Monetarist opposition left a void for Lucas to fill by providing a seemingly rigorous microfounded alternative to the confused state of macroeconomics. And microfoundations became the methodological weapon by which Lucas and his associates and followers imposed an iron discipline on the unruly community of macroeconomists. “In Lucas’s eyes,” DeVroey aptly writes,“ the mere intention to produce a theory of involuntary unemployment constitutes an infringement of the equilibrium discipline.” Showing that his description of Lucas is hardly overstated, DeVroey quotes from the famous 1978 joint declaration of war issued by Lucas and Sargent against Keynesian macroeconomics:

After freeing himself of the straightjacket (or discipline) imposed by the classical postulates, Keynes described a model in which rules of thumb, such as the consumption function and liquidity preference schedule, took the place of decision functions that a classical economist would insist be derived from the theory of choice. And rather than require that wages and prices be determined by the postulate that markets clear – which for the labor market seemed patently contradicted by the severity of business depressions – Keynes took as an unexamined postulate that money wages are sticky, meaning that they are set at a level or by a process that could be taken as uninfluenced by the macroeconomic forces he proposed to analyze.

Echoing Keynes’s famous description of the sway of Ricardian doctrines over England in the nineteenth century, DeVroey remarks that the microfoundations requirement “conquered macroeconomics as quickly and thoroughly as the Holy Inquisition conquered Spain,” noting, even more tellingly, that the conquest was achieved without providing any justification. Ricardo had, at least, provided a substantive analysis that could be debated; Lucas offered only an undisputable methodological imperative about the sole acceptable mode of macroeconomic reasoning. Just as optimization is a necessary component of the equilibrium discipline that had to be ruthlessly imposed on pain of excommunication from the macroeconomic community, so, too, did the correlate principle of market-clearing. To deviate from the market-clearing postulate was ipso facto evidence of an impure and heretical state of mind. DeVroey further quotes from the war declaration of Lucas and Sargent.

Cleared markets is simply a principle, not verifiable by direct observation, which may or may not be useful in constructing successful hypotheses about the behavior of these [time] series.

What was only implicit in the war declaration became evident later after right-thinking was enforced, and woe unto him that dared deviate from the right way of thinking.

But, as DeVroey skillfully shows, what is most remarkable is that, having declared market clearing an indisputable methodological principle, Lucas, contrary to his own demand for theoretical discipline, used the market-clearing postulate to free himself from the very equilibrium discipline he claimed to be imposing. How did the market-clearing postulate liberate Lucas from equilibrium discipline? To show how the sleight-of-hand was accomplished, DeVroey, in an argument parallel to that of Hoover in chapter one and that suggested by Leonard in chapter two, contrasts Lucas’s conception of microfoundations with a different microfoundations conception espoused by Hayek and Patinkin. Unlike Lucas, Hayek and Patinkin recognized that the optimization of individual economic agents is conditional on the optimization of other agents. Lucas assumes that if all agents optimize, then their individual optimization ensures that a social optimum is achieved, the whole being the sum of its parts. But that assumption ignores that the choices made interacting agents are themelves interdependent.

To capture the distinction between independent and interdependent optimization, DeVroey distinguishes between optimal plans and optimal behavior. Behavior is optimal only if an optimal plan can be executed. All agents can optimize individually in making their plans, but the optimality of their behavior depends on their capacity to carry those plans out. And the capacity of each to carry out his plan is contingent on the optimal choices of all other agents.

Optimizing plans refers to agents’ intentions before the opening of trading, the solution to the choice-theoretical problem with which they are faced. Optimizing behavior refers to what is observable after trading has started. Thus optimal behavior implies that the optimal plan has been realized. . . . [O]ptmizing plans and optimizing behavior need to be logically separated – there is a difference between finding a solution to a choice problem and implementing the solution. In contrast, whenever optimizing behavior is the sole concept used, the possibility of there being a difference between them is discarded by definition. This is the standpoint takenby Lucas and Sargent. Once it is adopted, it becomes misleading to claim . . .that the microfoundations requirement is based on two criteria, optimizing behavior and market clearing. A single criterion is needed, and it is irrelevant whether this is called generalized optimizing behavior or market clearing. (De Vroey, p. 176)

Each agent is free to optimize his plan, but no agent can execute his optimal plan unless the plan coincides with the complementary plans of other agents. So, the execution of an optimal plan is not within the unilateral control of an agent formulating his own plan. One can readily assume that agents optimize their plans, but one cannot just assume that those plans can be executed as planned. The optimality of interdependent plans is not self-evident; it is a proposition that must be demonstrated. Assuming that agents optimize, Lucas simply asserts that, because agents optimize, markets must clear.

That is a remarkable non-sequitur. And from that non-sequitur, Lucas jumps to a further non-sequitur: that an optimizing representative agent is all that’s required for a macroeconomic model. The logical straightjacket (or discipline) of demonstrating that interdependent optimal plans are consistent is thus discarded (or trampled upon). Lucas’s insistence on a market-clearing principle turns out to be subterfuge by which the pretense of its upholding conceals its violation in practice.

My own view is that the assumption that agents formulate optimizing plans cannot be maintained without further analysis unless the agents are operating in isolation. If the agents interacting with each other, the assumption that they optimize requires a theory of their interaction. If the focus is on equilibrium interactions, then one can have a theory of equilibrium, but then the possibility of non-equilibrium states must also be acknowledged.

That is what John Nash did in developing his equilibrium theory of positive-sum games. He defined conditions for the existence of equilibrium, but he offered no theory of how equilibrium is achieved. Lacking such a theory, he acknowledged that non-equilibrium solutions might occur, e.g., in some variant of the Holmes-Moriarty game. To simply assert that because interdependent agents try to optimize, they must, as a matter of principle, succeed in optimizing is to engage in question-begging on a truly grand scale. To insist, as a matter of methodological principle, that everyone else must also engage in question-begging on equally grand scale is what I have previously called methodological arrogance, though an even harsher description might be appropriate.

In the sixth essay (“Not Going Away: Microfoundations in the making of a new consensus in macroeconomics”), Pedro Duarte considers the current state of apparent macroeconomic consensus in the wake of the sweeping triumph of the Lucasian micorfoundtions methodological imperative. In its current state, mainstream macroeconomists from a variety of backgrounds have reconciled themselves and adjusted to the methodological absolutism Lucas and his associates and followers have imposed on macroeconomic theorizing. Leading proponents of the current consensus are pleased to announce, in unseemly self-satisfaction, that macroeconomics is now – but presumably not previously – “firmly grounded in the principles of economic [presumably neoclassical] theory.” But the underlying conception of neoclassical economic theory motivating such a statement is almost laughably narrow, and, as I have just shown, strictly false even if, for argument’s sake, that narrow conception is accepted.

Duarte provides an informative historical account of the process whereby most mainstream Keynesians and former old-line Monetarists, who had, in fact, adopted much of the underlying Keynesian theoretical framework themselves, became reconciled to the non-negotiable methodological microfoundational demands upon which Lucas and his New Classical followers and Real-Business-Cycle fellow-travelers insisted. While Lucas was willing to tolerate differences of opinion about the importance of monetary factors in accounting for business-cycle fluctuations in real output and employment, and even willing to countenance a role for countercyclical monetary policy, such differences of opinion could be tolerated only if they could be derived from an acceptable microfounded model in which the agent(s) form rational expectations. If New Keynesians were able to produce results rationalizing countercyclical policies in such microfounded models with rational expectations, Lucas was satisfied. Presumably, Lucas felt the price of conceding the theoretical legitimacy of countercyclical policy was worth paying in order to achieve methodological hegemony over macroeconomic theory.

And no doubt, for Lucas, the price was worth paying, because it led to what Marvin Goodfriend and Robert King called the New Neoclassical Synthesis in their 1997 article ushering in the new era of good feelings, a synthesis based on “the systematic application of intertemporal optimization and rational expectations” while embodying “the insights of monetarists . . . regarding the theory and practice of monetary policy.”

While the first synthesis brought about a convergence of sorts between the disparate Walrasian and Keynesian theoretical frameworks, the convergence proved unstable because the inherent theoretical weaknesses of both paradigms were unable to withstand criticisms of the theoretical apparatus and of the policy recommendations emerging from that synthesis, particularly an inability to provide a straightforward analysis of inflation when it became a serious policy problem in the late 1960s and 1970s. But neither the Keynesian nor the Walrasian paradigms were developing in a way that addressed the points of most serious weakness.

On the Keynesian side, the defects included the static nature of the workhorse IS-LM model, the absence of a market for real capital and of a market for endogenous money. On the Walrasian side, the defects were the lack of any theory of actual price determination or of dynamic adjustment. The Hicksian temporary equilibrium paradigm might have provided a viable way forward, and for a very different kind of synthesis, but not even Hicks himself realized the potential of his own creation.

While the first synthesis was a product of convenience and misplaced optimism, the second synthesis is a product of methodological hubris and misplaced complacency derived from an elementary misunderstanding of the distinction between optimization by a single agent and the simultaneous optimization of two or more independent, yet interdependent, agents. The equilibrium of each is the result of the equilibrium of all, and a theory of optimization involving two or more agents requires a theory of how two or more interdependent agents can optimize simultaneously. The New neoclassical synthesis rests on the demand for a macroeconomic theory of individual optimization that refuses even to ask, let along provide an answer to, the question whether the optimization that it demands is actually achieved in practice or what happens if it is not. This is not a synthesis that will last, or that deserves to. And the sooner it collapses, the better off macroeconomics will be.

What the answer is I don’t know, but if I had to offer a suggestion, the one offered by my teacher Axel Leijonhufvud towards the end of his great book, written more than half a century ago, strikes me as not bad at all:

One cannot assume that what went wrong was simply that Keynes slipped up here and there in his adaptation of standard tool, and that consequently, if we go back and tinker a little more with the Marshallian toolbox his purposes will be realized. What is required, I believe, is a systematic investigation, form the standpoint of the information problems stressed in this study, of what elements of the static theory of resource allocation can without further ado be utilized in the analysis of dynamic and historical systems. This, of course, would be merely a first-step: the gap yawns very wide between the systematic and rigorous modern analysis of the stability of “featureless,” pure exchange systems and Keynes’ inspired sketch of the income-constrained process in a monetary-exchange-cum-production system. But even for such a first step, the prescription cannot be to “go back to Keynes.” If one must retrace some steps of past developments in order to get on the right track—and that is probably advisable—my own preference is to go back to Hayek. Hayek’s Gestalt-conception of what happens during business cycles, it has been generally agreed, was much less sound than Keynes’. As an unhappy consequence, his far superior work on the fundamentals of the problem has not received the attention it deserves. (p. 401)

I agree with all that, but would also recommend Roy Radner’s development of an alternative to the Arrow-Debreu version of Walrasian general equilibrium theory that can accommodate Hicksian temporary equilibrium, and Hawtrey’s important contributions to our understanding of monetary theory and the role and potential instability of endogenous bank money. On top of that, Franklin Fisher in his important work, The Disequilibrium Foundations of Equilibrium Economics, has given us further valuable guidance in how to improve the current sorry state of macroeconomics.

 

Filling the Arrow Explanatory Gap

The following (with some minor revisions) is a Twitter thread I posted yesterday. Unfortunately, because it was my first attempt at threading the thread wound up being split into three sub-threads and rather than try to reconnect them all, I will just post the complete thread here as a blogpost.

1. Here’s an outline of an unwritten paper developing some ideas from my paper “Hayek Hicks Radner and Four Equilibrium Concepts” (see here for an earlier ungated version) and some from previous blog posts, in particular Phillips Curve Musings

2. Standard supply-demand analysis is a form of partial-equilibrium (PE) analysis, which means that it is contingent on a ceteris paribus (CP) assumption, an assumption largely incompatible with realistic dynamic macroeconomic analysis.

3. Macroeconomic analysis is necessarily situated a in general-equilibrium (GE) context that precludes any CP assumption, because there are no variables that are held constant in GE analysis.

4. In the General Theory, Keynes criticized the argument based on supply-demand analysis that cutting nominal wages would cure unemployment. Instead, despite his Marshallian training (upbringing) in PE analysis, Keynes argued that PE (AKA supply-demand) analysis is unsuited for understanding the problem of aggregate (involuntary) unemployment.

5. The comparative-statics method described by Samuelson in the Foundations of Econ Analysis formalized PE analysis under the maintained assumption that a unique GE obtains and deriving a “meaningful theorem” from the 1st- and 2nd-order conditions for a local optimum.

6. PE analysis, as formalized by Samuelson, is conditioned on the assumption that GE obtains. It is focused on the effect of changing a single parameter in a single market small enough for the effects on other markets of the parameter change to be made negligible.

7. Thus, PE analysis, the essence of micro-economics is predicated on the macrofoundation that all, but one, markets are in equilibrium.

8. Samuelson’s meaningful theorems were a misnomer reflecting mid-20th-century operationalism. They can now be understood as empirically refutable propositions implied by theorems augmented with a CP assumption that interactions b/w markets are small enough to be neglected.

9. If a PE model is appropriately specified, and if the market under consideration is small or only minimally related to other markets, then differences between predictions and observations will be statistically insignificant.

10. So PE analysis uses comparative-statics to compare two alternative general equilibria that differ only in respect of a small parameter change.

11. The difference allows an inference about the causal effect of a small change in that parameter, but says nothing about how an economy would actually adjust to a parameter change.

12. PE analysis is conditioned on the CP assumption that the analyzed market and the parameter change are small enough to allow any interaction between the parameter change and markets other than the market under consideration to be disregarded.

13. However, the process whereby one equilibrium transitions to another is left undetermined; the difference between the two equilibria with and without the parameter change is computed but no account of an adjustment process leading from one equilibrium to the other is provided.

14. Hence, the term “comparative statics.”

15. The only suggestion of an adjustment process is an assumption that the price-adjustment in any market is an increasing function of excess demand in the market.

16. In his seminal account of GE, Walras posited the device of an auctioneer who announces prices–one for each market–computes desired purchases and sales at those prices, and sets, under an adjustment algorithm, new prices at which desired purchases and sales are recomputed.

17. The process continues until a set of equilibrium prices is found at which excess demands in all markets are zero. In Walras’s heuristic account of what he called the tatonnement process, trading is allowed only after the equilibrium price vector is found by the auctioneer.

18. Walras and his successors assumed, but did not prove, that, if an equilibrium price vector exists, the tatonnement process would eventually, through trial and error, converge on that price vector.

19. However, contributions by Sonnenschein, Mantel and Debreu (hereinafter referred to as the SMD Theorem) show that no price-adjustment rule necessarily converges on a unique equilibrium price vector even if one exists.

20. The possibility that there are multiple equilibria with distinct equilibrium price vectors may or may not be worth explicit attention, but for purposes of this discussion, I confine myself to the case in which a unique equilibrium exists.

21. The SMD Theorem underscores the lack of any explanatory account of a mechanism whereby changes in market prices, responding to excess demands or supplies, guide a decentralized system of competitive markets toward an equilibrium state, even if a unique equilibrium exists.

22. The Walrasian tatonnement process has been replaced by the Arrow-Debreu-McKenzie (ADM) model in an economy of infinite duration consisting of an infinite number of generations of agents with given resources and technology.

23. The equilibrium of the model involves all agents populating the economy over all time periods meeting before trading starts, and, based on initial endowments and common knowledge, making plans given an announced equilibrium price vector for all time in all markets.

24. Uncertainty is accommodated by the mechanism of contingent trading in alternative states of the world. Given assumptions about technology and preferences, the ADM equilibrium determines the set prices for all contingent states of the world in all time periods.

25. Given equilibrium prices, all agents enter into optimal transactions in advance, conditioned on those prices. Time unfolds according to the equilibrium set of plans and associated transactions agreed upon at the outset and executed without fail over the course of time.

26. At the ADM equilibrium price vector all agents can execute their chosen optimal transactions at those prices in all markets (certain or contingent) in all time periods. In other words, at that price vector, excess demands in all markets with positive prices are zero.

27. The ADM model makes no pretense of identifying a process that discovers the equilibrium price vector. All that can be said about that price vector is that if it exists and trading occurs at equilibrium prices, then excess demands will be zero if prices are positive.

28. Arrow himself drew attention to the gap in the ADM model, writing in 1959:

29. In addition to the explanatory gap identified by Arrow, another shortcoming of the ADM model was discussed by Radner: the dependence of the ADM model on a complete set of forward and state-contingent markets at time zero when equilibrium prices are determined.

30. Not only is the complete-market assumption a backdoor reintroduction of perfect foresight, it excludes many features of the greatest interest in modern market economies: the existence of money, stock markets, and money-crating commercial banks.

31. Radner showed that for full equilibrium to obtain, not only must excess demands in current markets be zero, but whenever current markets and current prices for future delivery are missing, agents must correctly expect those future prices.

32. But there is no plausible account of an equilibrating mechanism whereby price expectations become consistent with GE. Although PE analysis suggests that price adjustments do clear markets, no analogous analysis explains how future price expectations are equilibrated.

33. But if both price expectations and actual prices must be equilibrated for GE to obtain, the notion that “market-clearing” price adjustments are sufficient to achieve macroeconomic “equilibrium” is untenable.

34. Nevertheless, the idea that individual price expectations are rational (correct), so that, except for random shocks, continuous equilibrium is maintained, became the bedrock for New Classical macroeconomics and its New Keynesian and real-business cycle offshoots.

35. Macroeconomic theory has become a theory of dynamic intertemporal optimization subject to stochastic disturbances and market frictions that prevent or delay optimal adjustment to the disturbances, potentially allowing scope for countercyclical monetary or fiscal policies.

36. Given incomplete markets, the assumption of nearly continuous intertemporal equilibrium implies that agents correctly foresee future prices except when random shocks occur, whereupon agents revise expectations in line with the new information communicated by the shocks.
37. Modern macroeconomics replaced the Walrasian auctioneer with agents able to forecast the time path of all prices indefinitely into the future, except for intermittent unforeseen shocks that require agents to optimally their revise previous forecasts.
38. When new information or random events, requiring revision of previous expectations, occur, the new information becomes common knowledge and is processed and interpreted in the same way by all agents. Agents with rational expectations always share the same expectations.
39. So in modern macro, Arrow’s explanatory gap is filled by assuming that all agents, given their common knowledge, correctly anticipate current and future equilibrium prices subject to unpredictable forecast errors that change their expectations of future prices to change.
40. Equilibrium prices aren’t determined by an economic process or idealized market interactions of Walrasian tatonnement. Equilibrium prices are anticipated by agents, except after random changes in common knowledge. Semi-omniscient agents replace the Walrasian auctioneer.
41. Modern macro assumes that agents’ common knowledge enables them to form expectations that, until superseded by new knowledge, will be validated. The assumption is wrong, and the mistake is deeper than just the unrealism of perfect competition singled out by Arrow.
42. Assuming perfect competition, like assuming zero friction in physics, may be a reasonable simplification for some problems in economics, because the simplification renders an otherwise intractable problem tractable.
43. But to assume that agents’ common knowledge enables them to forecast future prices correctly transforms a model of decentralized decision-making into a model of central planning with each agent possessing the knowledge only possessed by an omniscient central planner.
44. The rational-expectations assumption fills Arrow’s explanatory gap, but in a deeply unsatisfactory way. A better approach to filling the gap would be to acknowledge that agents have private knowledge (and theories) that they rely on in forming their expectations.
45. Agents’ expectations are – at least potentially, if not inevitably – inconsistent. Because expectations differ, it’s the expectations of market specialists, who are better-informed than non-specialists, that determine the prices at which most transactions occur.
46. Because price expectations differ even among specialists, prices, even in competitive markets, need not be uniform, so that observed price differences reflect expectational differences among specialists.
47. When market specialists have similar expectations about future prices, current prices will converge on the common expectation, with arbitrage tending to force transactions prices to converge toward notwithstanding the existence of expectational differences.
48. However, the knowledge advantage of market specialists over non-specialists is largely limited to their knowledge of the workings of, at most, a small number of related markets.
49. The perspective of specialists whose expectations govern the actual transactions prices in most markets is almost always a PE perspective from which potentially relevant developments in other markets and in macroeconomic conditions are largely excluded.
50. The interrelationships between markets that, according to the SMD theorem, preclude any price-adjustment algorithm, from converging on the equilibrium price vector may also preclude market specialists from converging, even roughly, on the equilibrium price vector.
51. A strict equilibrium approach to business cycles, either real-business cycle or New Keynesian, requires outlandish assumptions about agents’ common knowledge and their capacity to anticipate the future prices upon which optimal production and consumption plans are based.
52. It is hard to imagine how, without those outlandish assumptions, the theoretical superstructure of real-business cycle theory, New Keynesian theory, or any other version of New Classical economics founded on the rational-expectations postulate can be salvaged.
53. The dominance of an untenable macroeconomic paradigm has tragically led modern macroeconomics into a theoretical dead end.

Phillips Curve Musings

There’s a lot of talk about the Phillips Curve these days; people wonder why, with the unemployment rate reaching historically low levels, nominal and real wages have increased minimally with inflation remaining securely between 1.5 and 2%. The Phillips Curve, for those untutored in basic macroeconomics, depicts a relationship between inflation and unemployment. The original empirical Philips Curve relationship showed that high rates of unemployment were associated with low or negative rates of wage inflation while low rates of unemployment were associated with high rates of wage inflation. This empirical relationship suggested a causal theory that the rate of wage increase tends to rise when unemployment is low and tends to fall when unemployment is high, a causal theory that seems to follow from a simple supply-demand model in which wages rise when there is an excess demand for labor (unemployment is low) and wages fall when there is an excess supply of labor (unemployment is high).

Viewed in this light, low unemployment, signifying a tight labor market, signals that inflation is likely to rise, providing a rationale for monetary policy to be tightened to prevent inflation from rising at it normally does when unemployment is low. Seeming to accept that rationale, the Fed has gradually raised interest rates for the past two years or so. But the increase in interest rates has now slowed the expansion of employment and decline in unemployment to historic lows. Nor has the improving employment situation resulted in any increase in price inflation and at most a minimal increase in the rate of increase in wages.

In a couple of previous posts about sticky wages (here and here), I’ve questioned whether the simple supply-demand model of the labor market motivating the standard interpretation of the Phillips Curve is a useful way to think about wage adjustment and inflation-employment dynamics. I’ve offered a few reasons why the supply-demand model, though applicable in some situations, is not useful for understanding how wages adjust.

The particular reason that I want to focus on here is Keynes’s argument in chapter 19 of the General Theory (though I express it in terms different from his) that supply-demand analysis can’t explain how wages and employment are determined. The upshot of his argument I believe is that supply demand-analysis only works in a partial-equilibrium setting in which feedback effects from the price changes in the market under consideration don’t affect equilibrium prices in other markets, so that the position of the supply and demand curves in the market of interest can be assumed stable even as price and quantity in that market adjust from one equilibrium to another (the comparative-statics method).

Because the labor market, affecting almost every other market, is not a small part of the economy, partial-equilibrium analysis is unsuitable for understanding that market, the normal stability assumption being untenable if we attempt to trace the adjustment from one labor-market equilibrium to another after an exogenous disturbance. In the supply-demand paradigm, unemployment is a measure of the disequilibrium in the labor market, a disequilibrium that could – at least in principle — be eliminated by a wage reduction sufficient to equate the quantity of labor services supplied with the amount demanded. Viewed from this supply-demand perspective, the failure of the wage to fall to a supposed equilibrium level is attributable to some sort of endogenous stickiness or some external impediment (minimum wage legislation or union intransigence) in wage adjustment that prevents the normal equilibrating free-market adjustment mechanism. But the habitual resort to supply-demand analysis by economists, reinforced and rewarded by years of training and professionalization, is actually misleading when applied in an inappropriate context.

So Keynes was right to challenge this view of a potentially equilibrating market mechanism that is somehow stymied from behaving in the manner described in the textbook version of supply-demand analysis. Instead, Keynes argued that the level of employment is determined by the level of spending and income at an exogenously given wage level, an approach that seems to be deeply at odds with idea that price adjustments are an essential part of the process whereby a complex economic system arrives at, or at least tends to move toward, an equilibrium.

One of the main motivations for a search for microfoundations in the decades after the General Theory was published was to be able to articulate a convincing microeconomic rationale for persistent unemployment that was not eliminated by the usual tendency of market prices to adjust to eliminate excess supplies of any commodity or service. But Keynes was right to question whether there is any automatic market mechanism that adjusts nominal or real wages in a manner even remotely analogous to the adjustment of prices in organized commodity or stock exchanges – the sort of markets that serve as exemplars of automatic price adjustments in response to excess demands or supplies.

Keynes was also correct to argue that, even if there was a mechanism causing automatic wage adjustments in response to unemployment, the labor market, accounting for roughly 60 percent of total income, is so large that any change in wages necessarily affects all other markets, causing system-wide repercussions that might well offset any employment-increasing tendency of the prior wage adjustment.

But what I want to suggest in this post is that Keynes’s criticism of the supply-demand paradigm is relevant to any general-equilibrium system in the following sense: if a general-equilibrium system is considered from an initial non-equilibrium position, does the system have any tendency to move toward equilibrium? And to make the analysis relatively tractable, assume that the system is such that a unique equilibrium exists. Before proceeding, I also want to note that I am not arguing that traditional supply-demand analysis is necessarily flawed; I am just emphasizing that traditional supply-demand analysis is predicated on a macroeconomic foundation: that all markets but the one under consideration are in, or are in the neighborhood of, equilibrium. It is only because the system as a whole is in the neighborhood of equilibrium, that the microeconomic forces on which traditional supply-demand analysis relies appear to be so powerful and so stabilizing.

However, if our focus is a general-equilibrium system, microeconomic supply-demand analysis of a single market in isolation provides no basis on which to argue that the system as a whole has a self-correcting tendency toward equilibrium. To make such an argument is to commit a fallacy of composition. The tendency of any single market toward equilibrium is premised on an assumption that all markets but the one under analysis are already at, or in the neighborhood of, equilibrium. But when the system as a whole is in a disequilibrium state, the method of partial equilibrium analysis is misplaced; partial-equilibrium analysis provides no ground – no micro-foundation — for an argument that the adjustment of market prices in response to excess demands and excess supplies will ever – much less rapidly — guide the entire system back to an equilibrium state.

The lack of automatic market forces that return a system not in the neighborhood — for purposes of this discussion “neighborhood” is left undefined – of equilibrium back to equilibrium is implied by the Sonnenschein-Mantel-Debreu Theorem, which shows that, even if a unique general equilibrium exists, there may be no rule or algorithm for increasing (decreasing) prices in markets with excess demands (supplies) by which the general-equilibrium price vector would be discovered in a finite number of steps.

The theorem holds even under a Walrasian tatonnement mechanism in which no trading at disequilibrium prices is allowed. The reason is that the interactions between individual markets may be so complicated that a price-adjustment rule will not eliminate all excess demands, because even if a price adjustment reduces excess demand in one market, that price adjustment may cause offsetting disturbances in one or more other markets. So, unless the equilibrium price vector is somehow hit upon by accident, no rule or algorithm for price adjustment based on the excess demand in each market will necessarily lead to discovery of the equilibrium price vector.

The Sonnenschein Mantel Debreu Theorem reinforces the insight of Kenneth Arrow in an important 1959 paper “Toward a Theory of Price Adjustment,” which posed the question: how does the theory of perfect competition account for the determination of the equilibrium price at which all agents can buy or sell as much as they want to at the equilibrium (“market-clearing”) price? As Arrow observed, “there exists a logical gap in the usual formulations of the theory of perfectly competitive economy, namely, that there is no place for a rational decision with respect to prices as there is with respect to quantities.”

Prices in perfect competition are taken as parameters by all agents in the model, and optimization by agents consists in choosing optimal quantities. The equilibrium solution allows the mutually consistent optimization by all agents at the equilibrium price vector. This is true for the general-equilibrium system as a whole, and for partial equilibrium in every market. Not only is there no positive theory of price adjustment within the competitive general-equilibrium model, as pointed out by Arrow, but the Sonnenschein-Mantel-Debreu Theorem shows that there’s no guarantee that even the notional tatonnement method of price adjustment can ensure that a unique equilibrium price vector will be discovered.

While acknowledging his inability to fill the gap, Arrow suggested that, because perfect competition and price taking are properties of general equilibrium, there are inevitably pockets of market power, in non-equilibrium states, so that some transactors in non-equilibrium states, are price searchers rather than price takers who therefore choose both an optimal quantity and an optimal price. I have no problem with Arrow’s insight as far as it goes, but it still doesn’t really solve his problem, because he couldn’t explain, even intuitively, how a disequilibrium system with some agents possessing market power (either as sellers or buyers) transitions into an equilibrium system in which all agents are price-takers who can execute their planned optimal purchases and sales at the parametric prices.

One of the few helpful, but, as far as I can tell, totally overlooked, contributions of the rational-expectations revolution was to solve (in a very narrow sense) the problem that Arrow identified and puzzled over, although Hayek, Lindahl and Myrdal, in their original independent formulations of the concept of intertemporal equilibrium, had already provided the key to the solution. Hayek, Lindahl, and Myrdal showed that an intertemporal equilibrium is possible only insofar as agents form expectations of future prices that are so similar to each other that, if future prices turn out as expected, the agents would be able to execute their planned sales and purchases as expected.

But if agents have different expectations about the future price(s) of some commodity(ies), and if their plans for future purchases and sales are conditioned on those expectations, then when the expectations of at least some agents are inevitably disappointed, those agents will necessarily have to abandon (or revise) the plans that their previously formulated plans.

What led to Arrow’s confusion about how equilibrium prices are arrived at was the habit of thinking that market prices are determined by way of a Walrasian tatonnement process (supposedly mimicking the haggling over price by traders). So the notion that a mythical market auctioneer, who first calls out prices at random (prix cries au hasard), and then, based on the tallied market excess demands and supplies, adjusts those prices until all markets “clear,” is untenable, because continual trading at disequilibrium prices keeps changing the solution of the general-equilibrium system. An actual system with trading at non-equilibrium prices may therefore be moving away from, rather converging on, an equilibrium state.

Here is where the rational-expectations hypothesis comes in. The rational-expectations assumption posits that revisions of previously formulated plans are never necessary, because all agents actually do correctly anticipate the equilibrium price vector in advance. That is indeed a remarkable assumption to make; it is an assumption that all agents in the model have the capacity to anticipate, insofar as their future plans to buy and sell require them to anticipate, the equilibrium prices that will prevail for the products and services that they plan to purchase or sell. Of course, in a general-equilibrium system, all prices being determined simultaneously, the equilibrium prices for some future prices cannot generally be forecast in isolation from the equilibrium prices for all other products. So, in effect, the rational-expectations hypothesis supposes that each agent in the model is an omniscient central planner able to solve an entire general-equilibrium system for all future prices!

But let us not be overly nitpicky about details. So forget about false trading, and forget about the Sonnenschein-Mantel-Debreu theorem. Instead, just assume that, at time t, agents form rational expectations of the future equilibrium price vector in period (t+1). If agents at time t form rational expectations of the equilibrium price vector in period (t+1), then they may well assume that the equilibrium price vector in period t is equal to the expected price vector in period (t+1).

Now, the expected price vector in period (t+1) may or may not be an equilibrium price vector in period t. If it is an equilibrium price vector in period t as well as in period (t+1), then all is right with the world, and everyone will succeed in buying and selling as much of each commodity as he or she desires. If not, prices may or may not adjust in response to that disequilibrium, and expectations may or may not change accordingly.

Thus, instead of positing a mythical auctioneer in a contrived tatonnement process as the mechanism whereby prices are determined for currently executed transactions, the rational-expectations hypothesis posits expected future prices as the basis for the prices at which current transactions are executed, providing a straightforward solution to Arrow’s problem. The prices at which agents are willing to purchase or sell correspond to their expectations of prices in the future. If they find trading partners with similar expectations of future prices, they will reach agreement and execute transactions at those prices. If they don’t find traders with similar expectations, they will either be unable to transact, or will revise their price expectations, or they will assume that current market conditions are abnormal and then decide whether to transact at prices different from those they had expected.

When current prices are more favorable than expected, agents will want to buy or sell more than they would have if current prices were equal to their expectations for the future. If current prices are less favorable than they expect future prices to be, they will not transact at all or will seek to buy or sell less than they would have bought or sold if current prices had equaled expected future prices. The dichotomy between observed current prices, dictated by current demands and supplies, and expected future prices is unrealistic; all current transactions are made with an eye to expected future prices and to their opportunities to postpone current transactions until the future, or to advance future transactions into the present.

If current prices for similar commodities are not uniform in all current transactions, a circumstance that Arrow attributes to the existence of varying degrees of market power across imperfectly competitive suppliers, price dispersion may actually be caused, not by market power, but by dispersion in the expectations of future prices held by agents. Sellers expecting future prices to rise will be less willing to sell at relatively low prices now than are suppliers with pessimistic expectations about future prices. Equilibrium occurs when all transactors share the same expectations of future prices and expected future prices correspond to equilibrium prices in the current period.

Of course, that isn’t the only possible equilibrium situation. There may be situations in which a future event that will change a subset of prices can be anticipated. If the anticipation of the future event affects not only expected future prices, it must also and necessarily affect current prices insofar as current supplies can be carried into the future from the present or current purchases can be postponed until the future or future consumption shifted into the present.

The practical upshot of these somewhat disjointed reflections is, I think,primarily to reinforce skepticism that the traditional Phillips Curve supposition that low and falling unemployment necessarily presages an increase in inflation. Wages are not primarily governed by the current state of the labor market, whatever the labor market might even mean in macroeconomic context.

Expectations rule! And the rational-expectations revolution to the contrary notwithstanding, we have no good theory of how expectations are actually formed and there is certainly no reason to assume that, as a general matter, all agents share the same set of expectations.

The current fairly benign state of the economy reflects the absence of any serious disappointment of price expectations. If an economy is operating not very far from an equilibrium, although expectations are not the same, they likely are not very different. They will only be very different after the unexpected strikes. When that happens, borrowers and traders who had taken positions based on overly optimistic expectations find themselves unable to meet their obligations. It is only then that we will see whether the economy is really as strong and resilient as it now seems.

Expecting the unexpected is hard to do, but you can be sure that, sooner or later, the unexpected is going to happen.


About Me

David Glasner
Washington, DC

I am an economist in the Washington DC area. My research and writing has been mostly on monetary economics and policy and the history of economics. In my book Free Banking and Monetary Reform, I argued for a non-Monetarist non-Keynesian approach to monetary policy, based on a theory of a competitive supply of money. Over the years, I have become increasingly impressed by the similarities between my approach and that of R. G. Hawtrey and hope to bring Hawtrey’s unduly neglected contributions to the attention of a wider audience.

My new book Studies in the History of Monetary Theory: Controversies and Clarifications has been published by Palgrave Macmillan

Follow me on Twitter @david_glasner

Archives

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 3,261 other subscribers
Follow Uneasy Money on WordPress.com