Archive for the 'incomplete markets' Category

Filling the Arrow Explanatory Gap

The following (with some minor revisions) is a Twitter thread I posted yesterday. Unfortunately, because it was my first attempt at threading the thread wound up being split into three sub-threads and rather than try to reconnect them all, I will just post the complete thread here as a blogpost.

1. Here’s an outline of an unwritten paper developing some ideas from my paper “Hayek Hicks Radner and Four Equilibrium Concepts” (see here for an earlier ungated version) and some from previous blog posts, in particular Phillips Curve Musings

2. Standard supply-demand analysis is a form of partial-equilibrium (PE) analysis, which means that it is contingent on a ceteris paribus (CP) assumption, an assumption largely incompatible with realistic dynamic macroeconomic analysis.

3. Macroeconomic analysis is necessarily situated a in general-equilibrium (GE) context that precludes any CP assumption, because there are no variables that are held constant in GE analysis.

4. In the General Theory, Keynes criticized the argument based on supply-demand analysis that cutting nominal wages would cure unemployment. Instead, despite his Marshallian training (upbringing) in PE analysis, Keynes argued that PE (AKA supply-demand) analysis is unsuited for understanding the problem of aggregate (involuntary) unemployment.

5. The comparative-statics method described by Samuelson in the Foundations of Econ Analysis formalized PE analysis under the maintained assumption that a unique GE obtains and deriving a “meaningful theorem” from the 1st- and 2nd-order conditions for a local optimum.

6. PE analysis, as formalized by Samuelson, is conditioned on the assumption that GE obtains. It is focused on the effect of changing a single parameter in a single market small enough for the effects on other markets of the parameter change to be made negligible.

7. Thus, PE analysis, the essence of micro-economics is predicated on the macrofoundation that all, but one, markets are in equilibrium.

8. Samuelson’s meaningful theorems were a misnomer reflecting mid-20th-century operationalism. They can now be understood as empirically refutable propositions implied by theorems augmented with a CP assumption that interactions b/w markets are small enough to be neglected.

9. If a PE model is appropriately specified, and if the market under consideration is small or only minimally related to other markets, then differences between predictions and observations will be statistically insignificant.

10. So PE analysis uses comparative-statics to compare two alternative general equilibria that differ only in respect of a small parameter change.

11. The difference allows an inference about the causal effect of a small change in that parameter, but says nothing about how an economy would actually adjust to a parameter change.

12. PE analysis is conditioned on the CP assumption that the analyzed market and the parameter change are small enough to allow any interaction between the parameter change and markets other than the market under consideration to be disregarded.

13. However, the process whereby one equilibrium transitions to another is left undetermined; the difference between the two equilibria with and without the parameter change is computed but no account of an adjustment process leading from one equilibrium to the other is provided.

14. Hence, the term “comparative statics.”

15. The only suggestion of an adjustment process is an assumption that the price-adjustment in any market is an increasing function of excess demand in the market.

16. In his seminal account of GE, Walras posited the device of an auctioneer who announces prices–one for each market–computes desired purchases and sales at those prices, and sets, under an adjustment algorithm, new prices at which desired purchases and sales are recomputed.

17. The process continues until a set of equilibrium prices is found at which excess demands in all markets are zero. In Walras’s heuristic account of what he called the tatonnement process, trading is allowed only after the equilibrium price vector is found by the auctioneer.

18. Walras and his successors assumed, but did not prove, that, if an equilibrium price vector exists, the tatonnement process would eventually, through trial and error, converge on that price vector.

19. However, contributions by Sonnenschein, Mantel and Debreu (hereinafter referred to as the SMD Theorem) show that no price-adjustment rule necessarily converges on a unique equilibrium price vector even if one exists.

20. The possibility that there are multiple equilibria with distinct equilibrium price vectors may or may not be worth explicit attention, but for purposes of this discussion, I confine myself to the case in which a unique equilibrium exists.

21. The SMD Theorem underscores the lack of any explanatory account of a mechanism whereby changes in market prices, responding to excess demands or supplies, guide a decentralized system of competitive markets toward an equilibrium state, even if a unique equilibrium exists.

22. The Walrasian tatonnement process has been replaced by the Arrow-Debreu-McKenzie (ADM) model in an economy of infinite duration consisting of an infinite number of generations of agents with given resources and technology.

23. The equilibrium of the model involves all agents populating the economy over all time periods meeting before trading starts, and, based on initial endowments and common knowledge, making plans given an announced equilibrium price vector for all time in all markets.

24. Uncertainty is accommodated by the mechanism of contingent trading in alternative states of the world. Given assumptions about technology and preferences, the ADM equilibrium determines the set prices for all contingent states of the world in all time periods.

25. Given equilibrium prices, all agents enter into optimal transactions in advance, conditioned on those prices. Time unfolds according to the equilibrium set of plans and associated transactions agreed upon at the outset and executed without fail over the course of time.

26. At the ADM equilibrium price vector all agents can execute their chosen optimal transactions at those prices in all markets (certain or contingent) in all time periods. In other words, at that price vector, excess demands in all markets with positive prices are zero.

27. The ADM model makes no pretense of identifying a process that discovers the equilibrium price vector. All that can be said about that price vector is that if it exists and trading occurs at equilibrium prices, then excess demands will be zero if prices are positive.

28. Arrow himself drew attention to the gap in the ADM model, writing in 1959:

29. In addition to the explanatory gap identified by Arrow, another shortcoming of the ADM model was discussed by Radner: the dependence of the ADM model on a complete set of forward and state-contingent markets at time zero when equilibrium prices are determined.

30. Not only is the complete-market assumption a backdoor reintroduction of perfect foresight, it excludes many features of the greatest interest in modern market economies: the existence of money, stock markets, and money-crating commercial banks.

31. Radner showed that for full equilibrium to obtain, not only must excess demands in current markets be zero, but whenever current markets and current prices for future delivery are missing, agents must correctly expect those future prices.

32. But there is no plausible account of an equilibrating mechanism whereby price expectations become consistent with GE. Although PE analysis suggests that price adjustments do clear markets, no analogous analysis explains how future price expectations are equilibrated.

33. But if both price expectations and actual prices must be equilibrated for GE to obtain, the notion that “market-clearing” price adjustments are sufficient to achieve macroeconomic “equilibrium” is untenable.

34. Nevertheless, the idea that individual price expectations are rational (correct), so that, except for random shocks, continuous equilibrium is maintained, became the bedrock for New Classical macroeconomics and its New Keynesian and real-business cycle offshoots.

35. Macroeconomic theory has become a theory of dynamic intertemporal optimization subject to stochastic disturbances and market frictions that prevent or delay optimal adjustment to the disturbances, potentially allowing scope for countercyclical monetary or fiscal policies.

36. Given incomplete markets, the assumption of nearly continuous intertemporal equilibrium implies that agents correctly foresee future prices except when random shocks occur, whereupon agents revise expectations in line with the new information communicated by the shocks.
37. Modern macroeconomics replaced the Walrasian auctioneer with agents able to forecast the time path of all prices indefinitely into the future, except for intermittent unforeseen shocks that require agents to optimally their revise previous forecasts.
38. When new information or random events, requiring revision of previous expectations, occur, the new information becomes common knowledge and is processed and interpreted in the same way by all agents. Agents with rational expectations always share the same expectations.
39. So in modern macro, Arrow’s explanatory gap is filled by assuming that all agents, given their common knowledge, correctly anticipate current and future equilibrium prices subject to unpredictable forecast errors that change their expectations of future prices to change.
40. Equilibrium prices aren’t determined by an economic process or idealized market interactions of Walrasian tatonnement. Equilibrium prices are anticipated by agents, except after random changes in common knowledge. Semi-omniscient agents replace the Walrasian auctioneer.
41. Modern macro assumes that agents’ common knowledge enables them to form expectations that, until superseded by new knowledge, will be validated. The assumption is wrong, and the mistake is deeper than just the unrealism of perfect competition singled out by Arrow.
42. Assuming perfect competition, like assuming zero friction in physics, may be a reasonable simplification for some problems in economics, because the simplification renders an otherwise intractable problem tractable.
43. But to assume that agents’ common knowledge enables them to forecast future prices correctly transforms a model of decentralized decision-making into a model of central planning with each agent possessing the knowledge only possessed by an omniscient central planner.
44. The rational-expectations assumption fills Arrow’s explanatory gap, but in a deeply unsatisfactory way. A better approach to filling the gap would be to acknowledge that agents have private knowledge (and theories) that they rely on in forming their expectations.
45. Agents’ expectations are – at least potentially, if not inevitably – inconsistent. Because expectations differ, it’s the expectations of market specialists, who are better-informed than non-specialists, that determine the prices at which most transactions occur.
46. Because price expectations differ even among specialists, prices, even in competitive markets, need not be uniform, so that observed price differences reflect expectational differences among specialists.
47. When market specialists have similar expectations about future prices, current prices will converge on the common expectation, with arbitrage tending to force transactions prices to converge toward notwithstanding the existence of expectational differences.
48. However, the knowledge advantage of market specialists over non-specialists is largely limited to their knowledge of the workings of, at most, a small number of related markets.
49. The perspective of specialists whose expectations govern the actual transactions prices in most markets is almost always a PE perspective from which potentially relevant developments in other markets and in macroeconomic conditions are largely excluded.
50. The interrelationships between markets that, according to the SMD theorem, preclude any price-adjustment algorithm, from converging on the equilibrium price vector may also preclude market specialists from converging, even roughly, on the equilibrium price vector.
51. A strict equilibrium approach to business cycles, either real-business cycle or New Keynesian, requires outlandish assumptions about agents’ common knowledge and their capacity to anticipate the future prices upon which optimal production and consumption plans are based.
52. It is hard to imagine how, without those outlandish assumptions, the theoretical superstructure of real-business cycle theory, New Keynesian theory, or any other version of New Classical economics founded on the rational-expectations postulate can be salvaged.
53. The dominance of an untenable macroeconomic paradigm has tragically led modern macroeconomics into a theoretical dead end.

Hayek and Temporary Equilibrium

In my three previous posts (here, here, and here) about intertemporal equilibrium, I have been emphasizing that the defining characteristic of an intertemporal equilibrium is that agents all share the same expectations of future prices – or at least the same expectations of those future prices on which they are basing their optimizing plans – over their planning horizons. At a given moment at which agents share the same expectations of future prices, the optimizing plans of the agents are consistent, because none of the agents would have any reason to change his optimal plan as long as price expectations do not change, or are not disappointed as a result of prices turning out to be different from what they had been expected to be.

The failure of expected prices to be fulfilled would therefore signify that the information available to agents in forming their expectations and choosing optimal plans conditional on their expectations had been superseded by newly obtained information. The arrival of new information can thus be viewed as a cause of disequilibrium as can any difference in information among agents. The relationship between information and equilibrium can be expressed as follows: differences in information or differences in how agents interpret information leads to disequilibrium, because those differences lead agents to form differing expectations of future prices.

Now the natural way to generalize the intertemporal equilibrium model is to allow for agents to have different expectations of future prices reflecting their differences in how they acquire, or in how they process, information. But if agents have different information, so that their expectations of future prices are not the same, the plans on which agents construct their subjectively optimal plans will be inconsistent and incapable of implementation without at least some revisions. But this generalization seems incompatible with the equilibrium of optimal plans, prices and price expectations described by Roy Radner, which I have identified as an updated version of Hayek’s concept of intertemporal equilibrium.

The question that I want to explore in this post is how to reconcile the absence of equilibrium of optimal plans, prices, and price expectations, with the intuitive notion of market clearing that we use to analyze asset markets and markets for current delivery. If markets for current delivery and for existing assets are in equilibrium in the sense that prices are adjusting in those markets to equate demand and supply in those markets, how can we understand the idea that  the optimizing plans that agents are seeking to implement are mutually inconsistent?

The classic attempt to explain this intermediate situation which partially is and partially is not an equilibrium, was made by J. R. Hicks in 1939 in Value and Capital when he coined the term “temporary equilibrium” to describe a situation in which current prices are adjusting to equilibrate supply and demand in current markets even though agents are basing their choices of optimal plans to implement over time on different expectations of what prices will be in the future. The divergence of the price expectations on the basis of which agents choose their optimal plans makes it inevitable that some or all of those expectations won’t be realized, and that some, or all, of those agents won’t be able to implement the optimal plans that they have chosen, without at least some revisions.

In Hayek’s early works on business-cycle theory, he argued that the correct approach to the analysis of business cycles must be analyzed as a deviation by the economy from its equilibrium path. The problem that he acknowledged with this approach was that the tools of equilibrium analysis could be used to analyze the nature of the equilibrium path of an economy, but could not easily be deployed to analyze how an economy performs once it deviates from its equilibrium path. Moreover, cyclical deviations from an equilibrium path tend not to be immediately self-correcting, but rather seem to be cumulative. Hayek attributed the tendency toward cumulative deviations from equilibrium to the lagged effects of monetary expansion which cause cumulative distortions in the capital structure of the economy that lead at first to an investment-driven expansion of output, income and employment and then later to cumulative contractions in output, income, and employment. But Hayek’s monetary analysis was never really integrated with the equilibrium analysis that he regarded as the essential foundation for a theory of business cycles, so the monetary analysis of the cycle remained largely distinct from, if not inconsistent with, the equilibrium analysis.

I would suggest that for Hayek the Hicksian temporary-equilibrium construct would have been the appropriate theoretical framework within which to formulate a monetary analysis consistent with equilibrium analysis. Although there are hints in the last part of The Pure Theory of Capital that Hayek was thinking along these lines, I don’t believe that he got very far, and he certainly gave no indication that he saw in the Hicksian method the analytical tool with which to weave the two threads of his analysis.

I will now try to explain how the temporary-equilibrium method makes it possible to understand  the conditions for a cumulative monetary disequilibrium. I make no attempt to outline a specifically Austrian or Hayekian theory of monetary disequilibrium, but perhaps others will find it worthwhile to do so.

As I mentioned in my previous post, agents understand that their price expectations may not be realized, and that their plans may have to be revised. Agents also recognize that, given the uncertainty underlying all expectations and plans, not all debt instruments (IOUs) are equally reliable. The general understanding that debt – promises to make future payments — must be evaluated and assessed makes it profitable for some agents to specialize in in debt assessment. Such specialists are known as financial intermediaries. And, as I also mentioned previously, the existence of financial intermediaries cannot be rationalized in the ADM model, because, all contracts being made in period zero, there can be no doubt that the equilibrium exchanges planned in period zero will be executed whenever and exactly as scheduled, so that everyone’s promise to pay in time zero is equally good and reliable.

For our purposes, a particular kind of financial intermediary — banks — are of primary interest. The role of a bank is to assess the quality of the IOUs offered by non-banks, and select from the IOUs offered to them those that are sufficiently reliable to be accepted by the bank. Once a prospective borrower’s IOU is accepted, the bank exchanges its own IOU for the non-bank’s IOU. No non-bank would accept a non-bank’s IOU, at least not on terms as favorable as those on which the bank offers in accepting an IOU. In return for the non-bank IOU, the bank credits the borrower with a corresponding amount of its own IOUs, which, because the bank promises to redeem its IOUs for the numeraire commodity on demand, is generally accepted at face value.

Thus, bank debt functions as a medium of exchange even as it enables non-bank agents to make current expenditures they could not have made otherwise if they can demonstrate to the bank that they are sufficiently likely to repay the loan in the future at agreed upon terms. Such borrowing and repayments are presumably similar to the borrowing and repayments that would occur in the ADM model unmediated by any financial intermediary. In assessing whether a prospective borrower will repay a loan, the bank makes two kinds of assessments. First, does the borrower have sufficient income-earning capacity to generate enough future income to make the promised repayments that the borrower would be committing himself to make? Second, should the borrower’s future income, for whatever reason, turn out to be insufficient to finance the promised repayments, does the borrower have collateral that would allow the bank to secure repayment from the collateral offered as security? In making both kinds of assessments the bank has to form an expectation about the future — the future income of the borrower and the future value of the collateral.

In a temporary-equilibrium context, the expectations of future prices held by agents are not the same, so the expectations of future prices of at least some agents will not be accurate, and some agents won’tbe able to execute their plans as intended. Agents that can’t execute their plans as intended are vulnerable if they have incurred future obligations based on their expectations of future prices that exceed their repayment capacity given the future prices that are actually realized. If they have sufficient wealth — i.e., if they have asset holdings of sufficient value — they may still be able to repay their obligations. However, in the process they may have to sell assets or reduce their own purchases, thereby reducing the income earned by other agents. Selling assets under pressure of obligations coming due is almost always associated with selling those assets at a significant loss, which is precisely why it usually preferable to finance current expenditure by borrowing funds and making repayments on a fixed schedule than to finance the expenditure by the sale of assets.

Now, in adjusting their plans when they observe that their price expectations are disappointed, agents may respond in two different ways. One type of adjustment is to increase sales or decrease purchases of particular goods and services that they had previously been planning to purchase or sell; such marginal adjustments do not fundamentally alter what agents are doing and are unlikely to seriously affect other agents. But it is also possible that disappointed expectations will cause some agents to conclude that their previous plans are no longer sustainable under the conditions in which they unexpectedly find themselves, so that they must scrap their old plans replacing them with completely new plans instead. In the latter case, the abandonment of plans that are no longer viable given disappointed expectations may cause other agents to conclude that the plans that they had expected to implement are no longer profitable and must be scrapped.

When agents whose price expectations have been disappointed respond with marginal adjustments in their existing plans rather than scrapping them and replacing them with new ones, a temporary equilibrium with disappointed expectations may still exist and that equilibrium may be reached through appropriate price adjustments in the markets for current delivery despite the divergent expectations of future prices held by agents. Operation of the price mechanism may still be able to achieve a reconciliation of revised but sub-optimal plans. The sub-optimal temporary equilibrium will be inferior to the allocation that would have resulted had agents all held correct expectations of future prices. Nevertheless, given a history of incorrect price expectations and misallocations of capital assets, labor, and other factors of production, a sub-optimal temporary equilibrium may be the best feasible outcome.

But here’s the problem. There is no guarantee that, when prices turn out to be very different from what they were expected to be, the excess demands of agents will adjust smoothly to changes in current prices. A plan that was optimal based on the expectation that the price of widgets would be $500 a unit may well be untenable at a price of $120 a unit. When realized prices are very different from what they had been expected to be, those price changes can lead to discontinuous adjustments, violating a basic assumption — the continuity of excess demand functions — necessary to prove the existence of an equilibrium. Once output prices reach some minimum threshold, the best response for some firms may be to shut down, the excess demand for the product produced by the firm becoming discontinuous at the that threshold price. The firms shutting down operations may be unable to repay loans they had obligated themselves to repay based on their disappointed price expectations. If ownership shares in firms forced to cease production are held by households that have predicated their consumption plans on prior borrowing and current repayment obligations, the ability of those households to fulfill their obligations may be compromised once those firms stop paying out the expected profit streams. Banks holding debts incurred by firms or households that borrowers cannot service may find that their own net worth is reduced sufficiently to make the banks’ own debt unreliable, potentially causing a breakdown in the payment system. Such effects are entirely consistent with a temporary-equilibrium model if actual prices turn out to be very different from what agents had expected and upon which they had constructed their future consumption and production plans.

Sufficiently large differences between expected and actual prices in a given period may result in discontinuities in excess demand functions once prices reach critical thresholds, thereby violating the standard continuity assumptions on which the existence of general equilibrium depends under the fixed-point theorems that are the lynchpin of modern existence proofs. C. J. Bliss made such an argument in a 1983 paper (“Consistent Temporary Equilibrium” in the volume Modern Macroeconomic Theory edited by  J. P. Fitoussi) in which he also suggested, as I did above, that the divergence of individual expectations implies that agents will not typically regard the debt issued by other agents as homogeneous. Bliss therefore posited the existence of a “Financier” who would subject the borrowing plans of prospective borrowers to an evaluation process to determine if the plan underlying the prospective loan sought by a borrower was likely to generate sufficient cash flow to enable the borrower to repay the loan. The role of the Financier is to ensure that the plans that firms choose are based on roughly similar expectations of future prices so that firms will not wind up acting on price expectations that must inevitably be disappointed.

I am unsure how to understand the function that Bliss’s Financier is supposed to perform. Presumably the Financier is meant as a kind of idealized companion to the Walrasian auctioneer rather than as a representation of an actual institution, but the resemblance between what the Financier is supposed to do and what bankers actually do is close enough to make it unclear to me why Bliss chose an obviously fictitious character to weed out business plans based on implausible price expectations rather than have the role filled by more realistic characters that do what their real-world counterparts are supposed to do. Perhaps Bliss’s implicit assumption is that real-world bankers do not constrain the expectations of prospective borrowers sufficiently to suggest that their evaluation of borrowers would increase the likelihood that a temporary equilibrium actually exists so that only an idealized central authority could impose sufficient consistency on the price expectations to make the existence of a temporary equilibrium likely.

But from the perspective of positive macroeconomic and business-cycle theory, explicitly introducing banks that simultaneously provide an economy with a medium of exchange – either based on convertibility into a real commodity or into a fiat base money issued by the monetary authority – while intermediating between ultimate borrowers and ultimate lenders seems to be a promising way of modeling a dynamic economy that sometimes may — and sometimes may not — function at or near a temporary equilibrium.

We observe economies operating in the real world that sometimes appear to be functioning, from a macroeconomic perspective, reasonably well with reasonably high employment, increasing per capita output and income, and reasonable price stability. At other times, these economies do not function well at all, with high unemployment and negative growth, sometimes with high rates of inflation or with deflation. Sometimes, these economies are beset with financial crises in which there is a general crisis of solvency, and even apparently solvent firms are unable to borrow. A macroeconomic model should be able to account in some way for the diversity of observed macroeconomic experience. The temporary equilibrium paradigm seems to offer a theoretical framework capable of accounting for this diversity of experience and for explaining at least in a very general way what accounts for the difference in outcomes: the degree of congruence between the price expectations of agents. When expectations are reasonably consistent, the economy is able to function at or near a temporary equilibrium which is likely to exist. When expectations are highly divergent, a temporary equilibrium may not exist, and even if it does, the economy may not be able to find its way toward the equilibrium. Price adjustments in current markets may be incapable of restoring equilibrium inasmuch as expectations of future prices must also adjust to equilibrate the economy, there being no market mechanism by which equilibrium price expectations can be adjusted or restored.

This, I think, is the insight underlying Axel Leijonhufvud’s idea of a corridor within which an economy tends to stay close to an equilibrium path. However if the economy drifts or is shocked away from its equilibrium time path, the stabilizing forces that tend to keep an economy within the corridor cease to operate at all or operate only weakly, so that the tendency for the economy to revert back to its equilibrium time path is either absent or disappointingly weak.

The temporary-equilibrium method, it seems to me, might have been a path that Hayek could have successfully taken in pursuing the goal he had set for himself early in his career: to reconcile equilibrium-analysis with a theory of business cycles. Why he ultimately chose not to take this path is a question that, for now at least, I will leave to others to try to answer.

Roy Radner and the Equilibrium of Plans, Prices and Price Expectations

In this post I want to discuss Roy Radner’s treatment of an equilibrium of plans, prices, and price expectations (EPPPE) and its relationship to Hayek’s conception of intertemporal equilibrium, of which Radner’s treatment is a technically more sophisticated version. Although I seen no evidence that Radner was directly influenced by Hayek’s work, I consider Radner’s conception of EPPPE to be a version of Hayek’s conception of intertemporal equilibrium, because it captures essential properties of Hayek’s conception of intertemporal equilibrium as a situation in which agents independently formulate their own optimizing plans based on the prices that they actually observe – their common knowledge – and on the future prices that they expect to observe over the course of their planning horizons. While currently observed prices are common knowledge – not necessarily a factual description of economic reality but not an entirely unreasonable simplifying assumption – the prices that individual agents expect to observe in the future are subjective knowledge based on whatever common or private knowledge individuals may have and whatever methods they may be using to form their expectations of the prices that will be observed in the future. An intertemporal equilibrium refers to a set of decentralized plans that are both a) optimal from the standpoint of every agent’s own objectives given their common knowledge of current prices and their subjective expectations of future prices and b) mutually consistent.

If an agent has chosen an optimal plan given current and expected future prices, that plan will not be changed unless the agent acquires new information that renders the existing plan sub-optimal relative to the new information. Otherwise, there would be no reason for the agent to deviate from an optimal plan. The new information that could cause an agent to change a formerly optimal plan would either affect the preferences of the agent, the technology available to the agent, or would somehow be reflected in current prices or in expected future prices. But it seems improbable that there could be a change in preferences or technology would not also be reflected in current or expected future prices. So absent a change in current or expected future prices, there would seem to be almost no likelihood that an agent would deviate from a plan that was optimal given current prices and the future prices expected by the agent.

The mutual consistency of the optimizing plans of independent agents therefore turns out to be equivalent to the condition that all agents observe the same current prices – their common knowledge – and have exactly the same forecasts of the future prices upon which they have relied in choosing their optimal plans. Even should their forecasts of future prices turn out to be wrong, at the moment before their forecasts of future prices were changed or disproved by observation, their plans were still mutually consistent relative to the information on which their plans had been chosen. The failure of the equilibrium to be maintained could be attributed to a change in information that meant that the formerly optimal plans were no longer optimal given the newly acquired information. But until the new information became available, the mutual consistency of optimal plans at that (fleeting) moment signified an equilibrium state. Thus, the defining characteristic of an intertemporal equilibrium in which current prices are common knowledge is that all agents share the same expectations of the future prices on which their optimal plans have been based.

There are fundamental differences between the Arrow-Debreu-McKenzie (ADM) equilibrium and the EPPPE. One difference worth mentioning is that, under the standard assumptions of the ADM model, the equilibrium is Pareto-optimal, and any Pareto-optimum allocation, by a suitable redistribution of initial endowments, could be achieved as a general equilibrium (two welfare theorems). These results do not generally hold for EPPPE, because, in contrast to the ADM model, it is possible for agents in EPPPE to acquire additional information over time, not only passively, but by investing resources in the production of information. Investing resources in the production of information can cause inefficiency in two ways: first, by creating non-convexities (owing to start-up costs in information gathering activities) that are inconsistent with the uniform competitive prices characteristic of the ADM equilibrium, and second, by creating incentives to devote resources to produce information whose value is derived from profits in trading with less well-informed agents. The latter source of inefficiency was discovered by Jack Hirshleifer in his classic 1971 paper, which I have written about in several previous posts (here, here, here, and here).

But the important feature of Radner’s EPPPE that I want to emphasize here — and what radically distinguishes it from the ADM equilibrium — is its fragility. Unlike the ADM equilibrium which is established once and forever at time zero of a model in which all production and consumption starts in period one, the EPPPE, even if it ever exists, is momentary, and is subject to unraveling whenever there is a change in the underlying information upon which current prices and expected future prices depend, and upon which agents, in choosing their optimal plans, rely. Time is not just, as it is in the ADM model, an appendage to the EPPPE, and, as a result, EPPPE can account for many phenomena, practices, and institutions that are left out of the ADM model.

The two differences that are most relevant in this context are the existence of stock markets in which shares of firms are traded based on expectations of the future net income streams associated with those firms, and the existence of a medium of exchange supplied by private financial intermediaries known as banks. In the ADM model in which all transactions are executed in time zero, in advance of all the actual consumption and production activities determined by those transactions, there would be no reason to hold, or to supply, a medium of exchange. The ADM equilibrium allows for agents to borrow or lend at equilibrium interest rates to optimize the time profiles of their consumption relative to their endowments and the time profiles of their earnings. Since all such transactions are consummated in time zero, and since, through some undefined process, the complete solvency and the integrity of all parties to all transactions is ascertained in time zero, the probability of a default on any loan contracted at time zero is zero. As a result, each agent faces a single intertemporal budget constraint at time zero over all periods from 1 to n. Walras’s Law therefore holds across all time periods for this intertemporal budget constraint, each agent transacting at the same prices in each period as every other agent does.

Once an equilibrium price vector is established in time zero, each agent knows that his optimal plan based on that price vector (which is the common knowledge of all agents) will be executed over time exactly as determined in time zero. There is no reason for any exchange of ownership shares in firms, the future income streams from each firm being known in advance.

The ADM equilibrium is a model of an economic process very different from Radner’s EPPPE, because in EPPPE, agents have no reason to assume that their current plans, even if they are momentarily both optimal and mutually consistent with the plans of all other agents, will remain optimal and consistent with the plans of all other agents. New information can arrive or be produced that will necessitate a revision in plans. Because even equilibrium plans are subject to revision, agents must take into account the solvency and credit worthiness of counterparties with whom they enter into transactions. The potentially imperfect credit-worthiness of at least some agents enables certain financial intermediaries (aka banks) to provide a service by offering to exchange their debt, which is widely considered to be more credit-worthy than the debt of ordinary agents, to agents seeking to borrow to finance purchases of either consumption or investment goods. Many agents seeking to borrow therefore prefer exchanging their debt for bank debt, bank debt being acceptable by other agents at face value. In addition, because the acquisition of new information is possible, there is a reason for agents to engage in speculative trades of commodities or assets. Such assets include ownership shares of firms, and agents may revise their valuations of those firms as they revise their expectations about future prices and their expectations about the revised plans of those firms in response to newly acquired information.

I will discuss the special role of banks at greater length in my next post on temporary equilibrium. But for now, I just want to underscore a key point: in the EPPE, unless all agents have the same expectations of future prices, Walras’s Law need not hold. The proof that Walras’s holds depends on the assumption that individual plans to buy and sell are based on the assumption that every agent buys or sells each commodity at the same price that every other transactor buys  or sells that commodity. But in the intertemporal context, in which only current, not future prices, are observed, plans for current and future prices are made based on expectations about future prices. If agents don’t share the same expectations about future prices, agents making plans for future purchases based on overly optimistic expectations about the prices at which they will be able to sell, may make commitments to buy in the future (or commitment to repay loans to finance purchases in the present) that they will be unable to discharge. Reneging on commitments to buy in the future or to repay obligations incurred in the present may rule out the existence of even a temporary equilibrium in the future.

Finally, let me add a word about Radner’s terminology. In his 1987 entry on “Uncertainty and General Equilibrium” for the New Palgrave Dictionary of Economics, (Here is a link to the revised version on line), Radner writes:

A trader’s expectations concern both future environmental events and future prices. Regarding expectations about future environmental events, there is no conceptual problem. According to the Expected Utility Hypothesis, each trader is characterized by a subjective probability measure on the set of complete histories of the environment. Since, by definition, the evolution of the environment is exogenous, a trader’s conditional probability of a future event, given the information to date, is well defined.

It is not so obvious how to proceed with regard to trader’s expectations about future prices. I shall contrast two possible approaches. In the first, which I shall call the perfect foresight approach, let us assume that the behaviour of traders is such as to determine, for each complete history of the environment, a unique corresponding sequence of price system[s]. . .

Thus, the perfect foresight approach implies that, in equilibrium, traders have common price expectation functions. These price expectation functions indicate, for each date-event pair, what the equilibrium price system would be in the corresponding market at that date event pair. . . . [I]t follows that, in equilibrium the traders would have strategies (plans) such that if these strategies were carried out, the markets would be cleared at each date-event pair. Call such plans consistent. A set of common price expectations and corresponding consistent plans is called an equilibrium of plans, prices, and price expectations.

My only problem with Radner’s formulation here is that he is defining his equilibrium concept in terms of the intrinsic capacity of the traders to predict prices rather the simple fact that traders form correct expectations. For purposes of the formal definition of EPPE, it is irrelevant whether traders predictions of future prices are correct because they are endowed with the correct model of the economy or because they are all lucky and randomly have happened simultaneously to form the same expectations of future prices. Radner also formulates an alternative version of his perfect-foresight approach in which agents don’t all share the same information. In such cases, it becomes possible for traders to make inferences about the environment by observing prices differ from what they had expected.

The situation in which traders enter the market with different non-price information presents an opportunity for agents to learn about the environment from prices, since current prices reflect, in a possibly complicated manner, the non-price information signals received by the various agents. To take an extreme example, the “inside information” of a trader in a securities market may lead him to bid up the price to a level higher than it otherwise would have been. . . . [A]n astute market observer might be able to infer that an insider has obtained some favourable information, just by careful observation of the price movement.

The ability to infer non-price information from otherwise inexplicable movements in prices leads Radner to define a concept of rational expectations equilibrium.

[E]conomic agents have the opportunity to revise their individual models in the light of observations and published data. Hence, there is a feedback from the true relationship to the individual models. An equilibrium of this system, in which the individual models are identical with the true model, is called a rational expectations equilibrium. This concept of equilibrium is more subtle, of course, that the ordinary concept of equilibrium of supply and demand. In a rational expectations equilibrium, not only are prices determined so as to equate supply and demand, but individual economic agents correctly perceive the true relationship between the non-price information received by the market participants and the resulting equilibrium market prices.

Though this discussion is very interesting from several theoretical angles, as an explanation of what is entailed by an economic equilibrium, it misses the key point, which is the one that Hayek identified in his 1928 and (especially) 1937 articles mentioned in my previous posts. An equilibrium corresponds to a situation in which all agents have identical expectations of the future prices upon which they are making optimal plans given the commonly observed current prices and the expected future prices. If all agents are indeed formulating optimal plans based on the information that they have at that moment, their plans will be mutually consistent and will be executable simultaneously without revision as long as the state of their knowledge at that instant does not change. How it happened that they arrived at identical expectations — by luck chance or supernatural powers of foresight — is irrelevant to that definition of equilibrium. Radner does acknowledge that, under the perfect-foresight approach, he is endowing economic agents with a wildly unrealistic powers of imagination and computational capacity, but from his exposition, I am unable to decide whether he grasped the subtle but crucial point about the irrelevance of an assumption about the capacities of agents to the definition of EPPPE.

Although it is capable of describing a richer set of institutions and behavior than is the Arrow-Debreu model, the perfect-foresight approach is contrary to the spirit of much of competitive market theory in that it postulates that individual traders must be able to forecast, in some sense, the equilibrium prices that will prevail in the future under all alternative states of the environment. . . .[T]his approach . . . seems to require of the traders a capacity for imagination and computation far beyond what is realistic. . . .

These last considerations lead us in a different direction, which I shall call the bounded rationality approach. . . . An example of the bounded-rationality approach is the theory of temporary equilibrium.

By eschewing any claims about the rationality of the agents or their computational powers, one can simply talk about whether agents do or do not have identical expectations of future prices and what the implications of those assumptions are. When expectations do agree, there is at least a momentary equilibrium of plans, prices and price expectations. When they don’t agree, the question becomes whether even a temporary equilibrium exists and what kind of dynamic process is implied by the divergence of expectations. That it seems to me would be a fruitful way forward for macroeconomics to follow. In my next post, I will discuss some of the characteristics and implications of a temporary-equilibrium approach to macroeconomics.

 

Price Stickiness Is a Symptom not a Cause

In my recent post about Nick Rowe and the law of reflux, I mentioned in passing that I might write a post soon about price stickiness. The reason that I thought it would be worthwhile writing again about price stickiness (which I have written about before here and here), because Nick, following a broad consensus among economists, identifies price stickiness as a critical cause of fluctuations in employment and income. Here’s how Nick phrased it:

An excess demand for land is observed in the land market. An excess demand for bonds is observed in the bond market. An excess demand for equities is observed in the equity market. An excess demand for money is observed in any market. If some prices adjust quickly enough to clear their market, but other prices are sticky so their markets don’t always clear, we may observe an excess demand for money as an excess supply of goods in those sticky-price markets, but the prices in flexible-price markets will still be affected by the excess demand for money.

Then a bit later, Nick continues:

If individuals want to save in the form of money, they won’t collectively be able to if the stock of money does not increase.There will be an excess demand for money in all the money markets, except those where the price of the non-money thing in that market is flexible and adjusts to clear that market. In the sticky-price markets there will nothing an individual can do if he wants to buy more money but nobody else wants to sell more. But in those same sticky-price markets any individual can always sell less money, regardless of what any other individual wants to do. Nobody can stop you selling less money, if that’s what you want to do.

Unable to increase the flow of money into their portfolios, each individual reduces the flow of money out of his portfolio. Demand falls in stick-price markets, quantity traded is determined by the short side of the market (Q=min{Qd,Qs}), so trade falls, and some traders that would be mutually advantageous in a barter or Walrasian economy even at those sticky prices don’t get made, and there’s a recession. Since money is used for trade, the demand for money depends on the volume of trade. When trade falls the flow of money falls too, and the stock demand for money falls, until the representative individual chooses a flow of money out of his portfolio equal to the flow in. He wants to increase the flow in, but cannot, since other individuals don’t want to increase their flows out.

The role of price stickiness or price rigidity in accounting for involuntary unemployment is an old and complicated story. If you go back and read what economists before Keynes had to say about the Great Depression, you will find that there was considerable agreement that, in principle, if workers were willing to accept a large enough cut in their wages, they could all get reemployed. That was a proposition accepted by Hawtry and by Keynes. However, they did not believe that wage cutting was a good way of restoring full employment, because the process of wage cutting would be brutal economically and divisive – even self-destructive – politically. So they favored a policy of reflation that would facilitate and hasten the process of recovery. However, there also those economists, e.g., Ludwig von Mises and the young Lionel Robbins in his book The Great Depression, (which he had the good sense to disavow later in life) who attributed high unemployment to an unwillingness of workers and labor unions to accept wage cuts and to various other legal barriers preventing the price mechanism from operating to restore equilibrium in the normal way that prices adjust to equate the amount demanded with the amount supplied in each and every single market.

But in the General Theory, Keynes argued that if you believed in the standard story told by microeconomics about how prices constantly adjust to equate demand and supply and maintain equilibrium, then maybe you should be consistent and follow the Mises/Robbins story and just wait for the price mechanism to perform its magic, rather than support counter-cyclical monetary and fiscal policies. So Keynes then argued that there is actually something wrong with the standard microeconomic story; price adjustments can’t ensure that overall economic equilibrium is restored, because the level of employment depends on aggregate demand, and if aggregate demand is insufficient, wage cutting won’t increase – and, more likely, would reduce — aggregate demand, so that no amount of wage-cutting would succeed in reducing unemployment.

To those upholding the idea that the price system is a stable self-regulating system or process for coordinating a decentralized market economy, in other words to those upholding microeconomic orthodoxy as developed in any of the various strands of the neoclassical paradigm, Keynes’s argument was deeply disturbing and subversive.

In one of the first of his many important publications, “Liquidity Preference and the Theory of Money and Interest,” Franco Modigliani argued that, despite Keynes’s attempt to prove that unemployment could persist even if prices and wages were perfectly flexible, the assumption of wage rigidity was in fact essential to arrive at Keynes’s result that there could be an equilibrium with involuntary unemployment. Modigliani did so by positing a model in which the supply of labor is a function of real wages. It was not hard for Modigliani to show that in such a model an equilibrium with unemployment required a rigid real wage.

Modigliani was not in favor of relying on price flexibility instead of counter-cyclical policy to solve the problem of involuntary unemployment; he just argued that the rationale for such policies had to be that prices and wages were not adjusting immediately to clear markets. But the inference that Modigliani drew from that analysis — that price flexibility would lead to an equilibrium with full employment — was not valid, there being no guarantee that price adjustments would necessarily lead to equilibrium, unless all prices and wages instantaneously adjusted to their new equilibrium in response to any deviation from a pre-existing equilibrium.

All the theory of general equilibrium tells us is that if all trading takes place at the equilibrium set of prices, the economy will be in equilibrium as long as the underlying “fundamentals” of the economy do not change. But in a decentralized economy, no one knows what the equilibrium prices are, and the equilibrium price in each market depends in principle on what the equilibrium prices are in every other market. So unless the price in every market is an equilibrium price, none of the markets is necessarily in equilibrium.

Now it may well be that if all prices are close to equilibrium, the small changes will keep moving the economy closer and closer to equilibrium, so that the adjustment process will converge. But that is just conjecture, there is no proof showing the conditions under which a simple rule that says raise the price in any market with an excess demand and decrease the price in any market with an excess supply will in fact lead to the convergence of the whole system to equilibrium. Even in a Walrasian tatonnement system, in which no trading at disequilibrium prices is allowed, there is no proof that the adjustment process will eventually lead to the discovery of the equilibrium price vector. If trading at disequilibrium prices is allowed, tatonnement is hopeless.

So the real problem is not that prices are sticky but that trading takes place at disequilibrium prices and there is no mechanism by which to discover what the equilibrium prices are. Modern macroeconomics solves this problem, in its characteristic fashion, by assuming it away by insisting that expectations are “rational.”

Economists have allowed themselves to make this absurd assumption because they are in the habit of thinking that the simple rule of raising price when there is an excess demand and reducing the price when there is an excess supply inevitably causes convergence to equilibrium. This habitual way of thinking has been inculcated in economists by the intense, and largely beneficial, training they have been subjected to in Marshallian partial-equilibrium analysis, which is built on the assumption that every market can be analyzed in isolation from every other market. But that analytic approach can only be justified under a very restrictive set of assumptions. In particular it is assumed that any single market under consideration is small relative to the whole economy, so that its repercussions on other markets can be ignored, and that every other market is in equilibrium, so that there are no changes from other markets that are impinging on the equilibrium in the market under consideration.

Neither of these assumptions is strictly true in theory, so all partial equilibrium analysis involves a certain amount of hand-waving. Nor, even if we wanted to be careful and precise, could we actually dispense with the hand-waving; the hand-waving is built into the analysis, and can’t be avoided. I have often referred to these assumptions required for the partial-equilibrium analysis — the bread and butter microeconomic analysis of Econ 101 — to be valid as the macroeconomic foundations of microeconomics, by which I mean that the casual assumption that microeconomics somehow has a privileged and secure theoretical position compared to macroeconomics and that macroeconomic propositions are only valid insofar as they can be reduced to more basic microeconomic principles is entirely unjustified. That doesn’t mean that we shouldn’t care about reconciling macroeconomics with microeconomics; it just means that the validity of proposition in macroeconomics is not necessarily contingent on being derived from microeconomics. Reducing macroeconomics to microeconomics should be an analytical challenge, not a methodological imperative.

So the assumption, derived from Modigliani’s 1944 paper that “price stickiness” is what prevents an economic system from moving automatically to a new equilibrium after being subjected to some shock or disturbance, reflects either a misunderstanding or a semantic confusion. It is not price stickiness that prevents the system from moving toward equilibrium, it is the fact that individuals are engaging in transactions at disequilibrium prices. We simply do not know how to compare different sets of non-equilibrium prices to determine which set of non-equilibrium prices will move the economy further from or closer to equilibrium. Our experience and out intuition suggest that in some neighborhood of equilibrium, an economy can absorb moderate shocks without going into a cumulative contraction. But all we really know from theory is that any trading at any set of non-equilibrium prices can trigger an economic contraction, and once it starts to occur, a contraction may become cumulative.

It is also a mistake to assume that in a world of incomplete markets, the missing markets being markets for the delivery of goods and the provision of services in the future, any set of price adjustments, however large, could by themselves ensure that equilibrium is restored. With an incomplete set of markets, economic agents base their decisions not just on actual prices in the existing markets; they base their decisions on prices for future goods and services which can only be guessed at. And it is only when individual expectations of those future prices are mutually consistent that equilibrium obtains. With inconsistent expectations of future prices, the adjustments in current prices in the markets that exist for currently supplied goods and services that in some sense equate amounts demanded and supplied, lead to a (temporary) equilibrium that is not efficient, one that could be associated with high unemployment and unused capacity even though technically existing markets are clearing.

So that’s why I regard the term “sticky prices” and other similar terms as very unhelpful and misleading; they are a kind of mental crutch that economists are too ready to rely on as a substitute for thinking about what are the actual causes of economic breakdowns, crises, recessions, and depressions. Most of all, they represent an uncritical transfer of partial-equilibrium microeconomic thinking to a problem that requires a system-wide macroeconomic approach. That approach should not ignore microeconomic reasoning, but it has to transcend both partial-equilibrium supply-demand analysis and the mathematics of intertemporal optimization.


About Me

David Glasner
Washington, DC

I am an economist in the Washington DC area. My research and writing has been mostly on monetary economics and policy and the history of economics. In my book Free Banking and Monetary Reform, I argued for a non-Monetarist non-Keynesian approach to monetary policy, based on a theory of a competitive supply of money. Over the years, I have become increasingly impressed by the similarities between my approach and that of R. G. Hawtrey and hope to bring Hawtrey’s unduly neglected contributions to the attention of a wider audience.

My new book Studies in the History of Monetary Theory: Controversies and Clarifications has been published by Palgrave Macmillan

Follow me on Twitter @david_glasner

Archives

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 3,263 other subscribers
Follow Uneasy Money on WordPress.com