Archive for the 'comparative statics' Category

The Rises and Falls of Keynesianism and Monetarism

The following is extracted from a paper on the history of macroeconomics that I’m now writing. I don’t know yet where or when it will be published and there may or may not be further installments, but I would be interested in any comments or suggestions that readers might have. Regular readers, if there are any, will probably recognize some familiar themes that I’ve been writing about in a number of my posts over the past several months. So despite the diminished frequency of my posting, I haven’t been entirely idle.

Recognizing the cognitive dissonance between the vision of the optimal equilibrium of a competitive market economy described by Marshallian economic theory and the massive unemployment of the Great Depression, Keynes offered an alternative, and, in his view, more general, theory, the optimal neoclassical equilibrium being a special case.[1] The explanatory barrier that Keynes struggled, not quite successfully, to overcome in the dire circumstances of the 1930s, was why market-price adjustments do not have the equilibrating tendencies attributed to them by Marshallian theory. The power of Keynes’s analysis, enhanced by his rhetorical gifts, enabled him to persuade much of the economics profession, especially many of the most gifted younger economists at the time, that he was right. But his argument, failing to expose the key weakness in the neoclassical orthodoxy, was incomplete.

The full title of Keynes’s book, The General Theory of Employment, Interest and Money identifies the key elements of his revision of neoclassical theory. First, contrary to a simplistic application of Marshallian theory, the mass unemployment of the Great Depression would not be substantially reduced by cutting wages to “clear” the labor market. The reason, according to Keynes, is that the levels of output and unemployment depend not on money wages, but on planned total spending (aggregate demand). Mass unemployment is the result of too little spending not excessive wages. Reducing wages would simply cause a corresponding decline in total spending, without increasing output or employment.

If wage cuts do not increase output and employment, the ensuing high unemployment, Keynes argued, is involuntary, not the outcome of optimizing choices made by workers and employers. Ever since, the notion that unemployment can be involuntary has remained a contested issue between Keynesians and neoclassicists, a contest requiring resolution in favor of one or the other theory or some reconciliation of the two.

Besides rejecting the neoclassical theory of employment, Keynes also famously disputed the neoclassical theory of interest by arguing that the rate of interest is not, as in the neoclassical theory, a reward for saving, but a reward for sacrificing liquidity. In Keynes’s view, rather than equilibrate savings and investment, interest equilibrates the demand to hold the money issued by the monetary authority with the amount issued by the monetary authority. Under the neoclassical theory, it is the price level that adjusts to equilibrate the demand for money with the quantity issued.

Had Keynes been more attuned to the Walrasian paradigm, he might have recast his argument that cutting wages would not eliminate unemployment by noting the inapplicability of a Marshallian supply-demand analysis of the labor market (accounting for over 50 percent of national income), because wage cuts would shift demand and supply curves in almost every other input and output market, grossly violating the ceteris-paribus assumption underlying Marshallian supply-demand paradigm. When every change in the wage shifts supply and demand curves in all markets for good and services, which in turn causes the labor-demand and labor-supply curves to shift, a supply-demand analysis of aggregate unemployment becomes a futile exercise.

Keynes’s work had two immediate effects on economics and economists. First, it immediately opened up a new field of research – macroeconomics – based on his theory that total output and employment are determined by aggregate demand. Representing only one element of Keynes’s argument, the simplified Keynesian model, on which macroeconomic theory was founded, seemed disconnected from either the Marshallian or Walrasian versions of neoclassical theory.

Second, the apparent disconnect between the simple Keynesian macro-model and neoclassical theory provoked an ongoing debate about the extent to which Keynesian theory could be deduced, or even reconciled, with the premises of neoclassical theory. Initial steps toward a reconciliation were provided when a model incorporating the quantity of money and the interest rate into the Keynesian analysis was introduced, soon becoming the canonical macroeconomic model of undergraduate and graduate textbooks.

Critics of Keynesian theory, usually those opposed to its support for deficit spending as a tool of aggregate demand management, its supposed inflationary bias, and its encouragement or toleration of government intervention in the free-market economy, tried to debunk Keynesianism by pointing out its inconsistencies with the neoclassical doctrine of a self-regulating market economy. But proponents of Keynesian precepts were also trying to reconcile Keynesian analysis with neoclassical theory. Future Nobel Prize winners like J. R. Hicks, J. E. Meade, Paul Samuelson, Franco Modigliani, James Tobin, and Lawrence Klein all derived various Keynesian propositions from neoclassical assumptions, usually by resorting to the un-Keynesian assumption of rigid or sticky prices and wages.

What both Keynesian and neoclassical economists failed to see is that, notwithstanding the optimality of an economy with equilibrium market prices, in either the Walrasian or the Marshallian versions, cannot explain either how that set of equilibrium prices is, or can be, found, or how it results automatically from the routine operation of free markets.

The assumption made implicitly by both Keynesians and neoclassicals was that, in an ideal perfectly competitive free-market economy, prices would adjust, if not instantaneously, at least eventually, to their equilibrium, market-clearing, levels so that the economy would achieve an equilibrium state. Not all Keynesians, of course, agreed that a perfectly competitive economy would reach that outcome, even in the long-run. But, according to neoclassical theory, equilibrium is the state toward which a competitive economy is drawn.

Keynesian policy could therefore be rationalized as an instrument for reversing departures from equilibrium and ensuring that such departures are relatively small and transitory. Notwithstanding Keynes’s explicit argument that wage cuts cannot eliminate involuntary unemployment, the sticky-prices-and-wages story was too convenient not to be adopted as a rationalization of Keynesian policy while also reconciling that policy with the neoclassical orthodoxy associated with the postwar ascendancy of the Walrasian paradigm.

The Walrasian ascendancy in neoclassical theory was the culmination of a silent revolution beginning in the late 1920s when the work of Walras and his successors was taken up by a younger generation of mathematically trained economists. The revolution proceeded along many fronts, of which the most important was proving the existence of a solution of the system of equations describing a general equilibrium for a competitive economy — a proof that Walras himself had not provided. The sophisticated mathematics used to describe the relevant general-equilibrium models and derive mathematically rigorous proofs encouraged the process of rapid development, adoption and application of mathematical techniques by subsequent generations of economists.

Despite the early success of the Walrasian paradigm, Kenneth Arrow, perhaps the most important Walrasian theorist of the second half of the twentieth century, drew attention to the explanatory gap within the paradigm: how the adjustment of disequilibrium prices is possible in a model of perfect competition in which every transactor takes market price as given. The Walrasian theory shows that a competitive equilibrium ensuring the consistency of agents’ plans to buy and sell results from an equilibrium set of prices for all goods and services. But the theory is silent about how those equilibrium prices are found and communicated to the agents of the model, the Walrasian tâtonnement process being an empirically empty heuristic artifact.

In fact, the explanatory gap identified by Arrow was even wider than he had suggested or realized, for another aspect of the Walrasian revolution of the late 1920s and 1930s was the extension of the equilibrium concept from a single-period equilibrium to an intertemporal equilibrium. Although earlier works by Irving Fisher and Frank Knight laid a foundation for this extension, the explicit articulation of intertemporal-equilibrium analysis was the nearly simultaneous contribution of three young economists, two Swedes (Myrdal and Lindahl) and an Austrian (Hayek) whose significance, despite being partially incorporated into the canonical Arrow-Debreu-McKenzie version of the Walrasian model, remains insufficiently recognized.

These three economists transformed the concept of equilibrium from an unchanging static economic system at rest to a dynamic system changing from period to period. While Walras and Marshall had conceived of a single-period equilibrium with no tendency to change barring an exogenous change in underlying conditions, Myrdal, Lindahl and Hayek conceived of an equilibrium unfolding through time, defined by the mutual consistency of the optimal plans of disparate agents to buy and sell in the present and in the future.

In formulating optimal plans that extend through time, agents consider both the current prices at which they can buy and sell, and the prices at which they will (or expect to) be able to buy and sell in the future. Although it may sometimes be possible to buy or sell forward at a currently quoted price for future delivery, agents planning to buy and sell goods or services rely, for the most part, on their expectations of future prices. Those expectations, of course, need not always turn out to have been accurate.

The dynamic equilibrium described by Myrdal, Lindahl and Hayek is a contingent event in which all agents have correctly anticipated the future prices on which they have based their plans. In the event that some, if not all, agents have incorrectly anticipated future prices, those agents whose plans were based on incorrect expectations may have to revise their plans or be unable to execute them. But unless all agents share the same expectations of future prices, their expectations cannot all be correct, and some of those plans may not be realized.

The impossibility of an intertemporal equilibrium of optimal plans if agents do not share the same expectations of future prices implies that the adjustment of perfectly flexible market prices is not sufficient an optimal equilibrium to be achieved. I shall have more to say about this point below, but for now I want to note that the growing interest in the quiet Walrasian revolution in neoclassical theory that occurred almost simultaneously with the Keynesian revolution made it inevitable that Keynesian models would be recast in explicitly Walrasian terms.

What emerged from the Walrasian reformulation of Keynesian analysis was the neoclassical synthesis that became the textbook version of macroeconomics in the 1960s and 1970s. But the seemingly anomalous conjunction of both inflation and unemployment during the 1970s led to a reconsideration and widespread rejection of the Keynesian proposition that output and employment are directly related to aggregate demand.

Indeed, supporters of the Monetarist views of Milton Friedman argued that the high inflation and unemployment of the 1970s amounted to an empirical refutation of the Keynesian system. But Friedman’s political conservatism, free-market ideology, and his acerbic criticism of Keynesian policies obscured the extent to which his largely atheoretical monetary thinking was influenced by Keynesian and Marshallian concepts that rendered his version of Monetarism an unattractive alternative for younger monetary theorists, schooled in the Walrasian version of neoclassicism, who were seeking a clear theoretical contrast with the Keynesian macro model.

The brief Monetarist ascendancy following 1970s inflation conveniently collapsed in the early 1980s, after Friedman’s Monetarist policy advice for controlling the quantity of money proved unworkable, when central banks, foolishly trying to implement the advice, prolonged a needlessly deep recession while central banks consistently overshot their monetary targets, thereby provoking a long series of embarrassing warnings from Friedman about the imminent return of double-digit inflation.


[1] Hayek, both a friend and a foe of Keynes, would chide Keynes decades after Keynes’s death for calling his theory a general theory when, in Hayek’s view, it was a special theory relevant only in periods of substantially less than full employment when increasing aggregate demand could increase total output. But in making this criticism, Hayek, himself, implicitly assumed that which he had himself admitted in his theory of intertemporal equilibrium that there is no automatic equilibration mechanism that ensures that general equilibrium obtains.

The Walras-Marshall Divide in Neoclassical Theory, Part II

In my previous post, which itself followed up an earlier post “General Equilibrium, Partial Equilibrium and Costs,” I laid out the serious difficulties with neoclassical theory in either its Walrasian or Marshallian versions: its exclusive focus on equilibrium states with no plausible explanation of any economic process that leads from disequilibrium to equilibrium.

The Walrasian approach treats general equilibrium as the primary equilibrium concept, because no equilibrium solution in a single market can be isolated from the equilibrium solutions for all other markets. Marshall understood that no single market could be in isolated equilibrium independent of all other markets, but the practical difficulty of framing an analysis of the simultaneous equilibration of all markets made focusing on general equilibrium unappealing to Marshall, who wanted economic analysis to be relevant to the concerns of the public, i.e., policy makers and men of affairs whom he regarded as his primary audience.

Nevertheless, in doing partial-equilibrium analysis, Marshall conceded that it had to be embedded within a general-equilibrium context, so he was careful to specify the ceteris-paribus conditions under which partial-equilibrium analysis could be undertaken. In particular, any market under analysis had to be sufficiently small, or the disturbance to which that market was subject had to be sufficiently small, for the repercussions of the disturbance in that market to have only minimal effect on other markets, or, if substantial, those effects had to concentrated on a specific market (e.g., the market for a substitute, or complementary, good).

By focusing on equilibrium in a single market, Marshall believed he was making the analysis of equilibrium more tractable than the Walrasian alternative of focusing on the analysis of simultaneous equilibrium in all markets. Walras chose to make his approach to general equilibrium, if not tractable, at least intuitive by appealing to the fiction of tatonnement conducted by an imaginary auctioneer adjusting prices in all markets in response to any inconsistencies in the plans of transactors preventing them from executing their plans at the announced prices.

But it eventually became clear, to Walras and to others, that tatonnement could not be considered a realistic representation of actual market behavior, because the tatonnement fiction disallows trading at disequilibrium prices by pausing all transactions while a complete set of equilibrium prices for all desired transactions is sought by a process of trial and error. Not only is all economic activity and the passage of time suspended during the tatonnement process, there is not even a price-adjustment algorithm that can be relied on to find a complete set of equilibrium prices in a finite number of iterations.

Despite its seeming realism, the Marshallian approach, piecemeal market-by-market equilibration of each distinct market, is no more tenable theoretically than tatonnement, the partial-equilibrium method being premised on a ceteris-paribus assumption in which all prices and all other endogenous variables determined in markets other than the one under analysis are held constant. That assumption can be maintained only on the condition that all markets are in equilibrium. So the implicit assumption of partial-equilibrium analysis is no less theoretically extreme than Walras’s tatonnement fiction.

In my previous post, I quoted Michel De Vroey’s dismissal of Keynes’s rationale for the existence of involuntary unemployment, a violation in De Vroey’s estimation, of Marshallian partial-equilibrium premises. Let me quote De Vroey again.

When the strict Marshallian viewpoint is adopted, everything is simple: it is assumed that the aggregate supply price function incorporates wages at their market-clearing magnitude. Instead, when taking Keynes’s line, it must be assumed that the wage rate that firms consider when constructing their supply price function is a “false” (i.e., non-market-clearing) wage. Now, if we want to keep firms’ perfect foresight assumption (and, let me repeat, we need to lest we fall into a theoretical wilderness), it must be concluded that firms’ incorporation of a false wage into their supply function follows from their correct expectation that this is indeed what will happen in the labor market. That is, firms’ managers are aware that in this market something impairs market clearing. No other explanation than the wage floor assumption is available as long as one remains in the canonical Marshallian framework. Therefore, all Keynes’s claims to the contrary notwithstanding, it is difficult to escape the conclusion that his effective demand reasoning is based on the fixed-wage hypothesis. The reason for unemployment lies in the labor market, and no fuss should be made about effective demand being [the reason rather] than the other way around.

A History of Macroeconomics from Keynes to Lucas and Beyond, pp. 22-23

My interpretation of De Vroey’s argument is that the strict Marshallian viewpoint requires that firms correctly anticipate the wages that they will have to pay in making their hiring and production decisions, while presumably also correctly anticipating the future demand for their products. I am unable to make sense of this argument unless it means that firms — and why should firm owners or managers be the only agents endowed with perfect or correct foresight? – correctly foresee the prices of the products that they sell and of the inputs that they purchase or hire. In other words, the strict Marshallian viewpoint invoked by De Vroey assumes that each transactor foresees, without the intervention of a timeless tatonnement process guided by a fictional auctioneer, the equilibrium price vector. In other words, when the strict Marshallian viewpoint is adopted, everything is simple; every transactor is a Walrasian auctioneer.

My interpretation of Keynes – and perhaps I’m just reading my own criticism of partial-equilibrium analysis into Keynes – is that he understood that the aggregate labor market can’t be analyzed in a partial-equilibrium setting, because Marshall’s ceteris-paribus proviso can’t be maintained for a market that accounts for roughly half the earnings of the economy. When conditions change in the labor market, everything else also changes. So the equilibrium conditions of the labor market must be governed by aggregate equilibrium conditions that can’t be captured in, or accounted for by, a Marshallian partial-equilibrium framework. Because something other than supply and demand in the labor market determines the equilibrium, what happens in the labor market can’t, by itself, restore an equilibrium.

That, I think, was Keynes’s intuition. But while identifying a serious defect in the Marshallian viewpoint, that intuition did not provide an adequate theory of adjustment. But the inadequacy of Keynes’s critique doesn’t rehabilitate the Marshallian viewpoint, certainly not in the form in which De Vroey represents it.

But there’s a deeper problem with the Marshallian viewpoint than just the interdependence of all markets. Although Marshall accepted marginal-utility theory in principle and used it to explain consumer demand, he tried to limit its application to demand while retaining the classical theory of the cost of production as a coordinate factor explaining the relative prices of goods and services. Marginal utility determines demand while cost determines supply, so that the interaction of supply and demand (cost and utility) jointly determine price just as the two blades of a scissor jointly cut a piece of cloth or paper.

This view of the role of cost could be maintained only in the context of the typical Marshallian partial-equilibrium exercise in which all prices — including input prices — except the price of a single output are held fixed at their general-equilibrium values. But the equilibrium prices of inputs are not determined independently of the values of the outputs they produce, so their equilibrium market values are derived exclusively from the value of whatever outputs they produce.

This was a point that Marshall, desiring to minimize the extent to which the Marginal Revolution overturned the classical theory of value, either failed to grasp, or obscured: that both prices and costs are simultaneously determined. By focusing on partial-equilibrium analysis, in which input prices are treated as exogenous variables rather than, as in general-equilibrium analysis, endogenously determined variables, Marshall was able to argue as if the classical theory that the cost incurred to produce something determines its value or its market price, had not been overturned.

The absolute dependence of input prices on the value of the outputs that they are being used to produce was grasped more clearly by Carl Menger than by Walras and certainly more clearly than by Marshall. What’s more, unlike either Walras or Marshall, Menger explicitly recognized the time lapse between the purchasing and hiring of inputs by a firm and the sale of the final output, inputs having been purchased or hired in expectation of the future sale of the output. But expected future sales are at prices anticipated, but not known, in advance, making the valuation of inputs equally conjectural and forcing producers to make commitments without knowing either their costs or their revenues before undertaking those commitments.

It is precisely this contingent relationship between the expectation of future sales at unknown, but anticipated, prices and the valuations that firms attach to the inputs they purchase or hire that provides an alternative to the problematic Marshallian and Walrasian accounts of how equilibrium market prices are actually reached.

The critical role of expected future prices in determining equilibrium prices was missing from both the Marshallian and the Walrasian theories of price determination. In the Walrasian theory, price determination was attributed to a fictional tatonnement process that Walras originally thought might serve as a kind of oversimplified and idealized version of actual market behavior. But Walras seems eventually to have recognized and acknowledged how far removed from reality his tatonnement invention actually was.

The seemingly more realistic Marshallian account of price determination avoided the unrealism of the Walrasian auctioneer, but only by attributing equally, if not more, unrealistic powers of foreknowledge to the transactors than Walras had attributed to his auctioneer. Only Menger, who realistically avoided attributing extraordinary knowledge either to transactors or to an imaginary auctioneer, instead attributing to transactors only an imperfect and fallible ability to anticipate future prices, provided a realistic account, or at least a conceptual approach toward a realistic account, of how prices are actually formed.

In a future post, I will try spell out in greater detail my version of a Mengerian account of price formation and how this account might tell us about the process by which a set of equilibrium prices might be realized.

General Equilibrium, Partial Equilibrium and Costs

Neoclassical economics is now bifurcated between Marshallian partial-equilibrium and Walrasian general-equilibrium analyses. With the apparent inability of neoclassical theory to explain the coordination failure of the Great Depression, J. M. Keynes proposed an alternative paradigm to explain the involuntary unemployment of the 1930s. But within two decades, Keynes’s contribution was subsumed under what became known as the neoclassical synthesis of the Keynesian and Walrasian theories (about which I have written frequently, e.g., here and here). Lacking microfoundations that could be reconciled with the assumptions of Walrasian general-equilibrium theory, the neoclassical synthesis collapsed, owing to the supposedly inadequate microfoundations of Keynesian theory.

But Walrasian general-equilibrium theory provides no plausible, much less axiomatic, account of how general equilibrium is, or could be, achieved. Even the imaginary tatonnement process lacks an algorithm that guarantees that a general-equilibrium solution, if it exists, would be found. Whatever plausibility is attributed to the assumption that price flexibility leads to equilibrium derives from Marshallian partial-equilibrium analysis, with market prices adjusting to equilibrate supply and demand.

Yet modern macroeconomics, despite its explicit Walrasian assumptions, implicitly relies on the Marshallian intuition that the fundamentals of general-equilibrium, prices and costs are known to agents who, except for random disturbances, continuously form rational expectations of market-clearing equilibrium prices in all markets.

I’ve written many earlier posts (e.g., here and here) contesting, in one way or another, the notion that all macroeconomic theories must be founded on first principles (i.e., microeconomic axioms about optimizing individuals). Any macroeconomic theory not appropriately founded on the axioms of individual optimization by consumers and producers is now dismissed as scientifically defective and unworthy of attention by serious scientific practitioners of macroeconomics.

When contesting the presumed necessity for macroeconomics to be microeconomically founded, I’ve often used Marshall’s partial-equilibrium method as a point of reference. Though derived from underlying preference functions that are independent of prices, the demand curves of partial-equilibrium analysis presume that all product prices, except the price of the product under analysis, are held constant. Similarly, the supply curves are derived from individual firm marginal-cost curves whose geometric position or algebraic description depends critically on the prices of raw materials and factors of production used in the production process. But neither the prices of alternative products to be purchased by consumers nor the prices of raw materials and factors of production are given independently of the general-equilibrium solution of the whole system.

Thus, partial-equilibrium analysis, to be analytically defensible, requires a ceteris-paribus proviso. But to be analytically tenable, that proviso must posit an initial position of general equilibrium. Unless the analysis starts from a state of general equilibrium, the assumption that all prices but one remain constant can’t be maintained, the constancy of disequilibrium prices being a nonsensical assumption.

The ceteris-paribus proviso also entails an assumption about the market under analysis; either the market itself, or the disturbance to which it’s subject, must be so small that any change in the equilibrium price of the product in question has de minimus repercussions on the prices of every other product and of every input and factor of production used in producing that product. Thus, the validity of partial-equilibrium analysis depends on the presumption that the unique and locally stable general-equilibrium is approximately undisturbed by whatever changes result from by the posited change in the single market being analyzed. But that presumption is not so self-evidently plausible that our reliance on it to make empirical predictions is always, or even usually, justified.

Perhaps the best argument for taking partial-equilibrium analysis seriously is that the analysis identifies certain deep structural tendencies that, at least under “normal” conditions of moderate macroeconomic stability (i.e., moderate unemployment and reasonable price stability), will usually be observable despite the disturbing influences that are subsumed under the ceteris-paribus proviso. That assumption — an assumption of relative ignorance about the nature of the disturbances that are assumed to be constant — posits that those disturbances are more or less random, and as likely to cause errors in one direction as another. Consequently, the predictions of partial-equilibrium analysis can be assumed to be statistically, though not invariably, correct.

Of course, the more interconnected a given market is with other markets in the economy, and the greater its size relative to the total economy, the less confidence we can have that the implications of partial-equilibrium analysis will be corroborated by empirical investigation.

Despite its frequent unsuitability, economists and commentators are often willing to deploy partial-equilibrium analysis in offering policy advice even when the necessary ceteris-paribus proviso of partial-equilibrium analysis cannot be plausibly upheld. For example, two of the leading theories of the determination of the rate of interest are the loanable-funds doctrine and the Keynesian liquidity-preference theory. Both these theories of the rate of interest suppose that the rate of interest is determined in a single market — either for loanable funds or for cash balances — and that the rate of interest adjusts to equilibrate one or the other of those two markets. But the rate of interest is an economy-wide price whose determination is an intertemporal-general-equilibrium phenomenon that cannot be reduced, as the loanable-funds and liquidity preference theories try to do, to the analysis of a single market.

Similarly partial-equilibrium analysis of the supply of, and the demand for, labor has been used of late to predict changes in wages from immigration and to advocate for changes in immigration policy, while, in an earlier era, it was used to recommend wage reductions as a remedy for persistently high aggregate unemployment. In the General Theory, Keynes correctly criticized those using a naïve version of the partial-equilibrium method to recommend curing high unemployment by cutting wage rates, correctly observing that the conditions for full employment required the satisfaction of certain macroeconomic conditions for equilibrium that would not necessarily be satisfied by cutting wages.

However, in the very same volume, Keynes argued that the rate of interest is determined exclusively by the relationship between the quantity of money and the demand to hold money, ignoring that the rate of interest is an intertemporal relationship between current and expected future prices, an insight earlier explained by Irving Fisher that Keynes himself had expertly deployed in his Tract on Monetary Reform and elsewhere (Chapter 17) in the General Theory itself.

Evidently, the allure of supply-demand analysis can sometimes be too powerful for well-trained economists to resist even when they actually know better themselves that it ought to be resisted.

A further point also requires attention: the conditions necessary for partial-equilibrium analysis to be valid are never really satisfied; firms don’t know the costs that determine the optimal rate of production when they actually must settle on a plan of how much to produce, how much raw materials to buy, and how much labor and other factors of production to employ. Marshall, the originator of partial-equilibrium analysis, analogized supply and demand to the blades of a scissor acting jointly to achieve a intended result.

But Marshall erred in thinking that supply (i.e., cost) is an independent determinant of price, because the equality of costs and prices is a characteristic of general equilibrium. It can be applied to partial-equilibrium analysis only under the ceteris-paribus proviso that situates partial-equilibrium analysis in a pre-existing general equilibrium of the entire economy. It is only in general-equilibrium state, that the cost incurred by a firm in producing its output represents the value of the foregone output that could have been produced had the firm’s output been reduced. Only if the analyzed market is so small that changes in how much firms in that market produce do not affect the prices of the inputs used in to produce that output can definite marginal-cost curves be drawn or algebraically specified.

Unless general equilibrium obtains, prices need not equal costs, as measured by the quantities and prices of inputs used by firms to produce any product. Partial equilibrium analysis is possible only if carried out in the context of general equilibrium. Cost cannot be an independent determinant of prices, because cost is itself determined simultaneously along with all other prices.

But even aside from the reasons why partial-equilibrium analysis presumes that all prices, but the price in the single market being analyzed, are general-equilibrium prices, there’s another, even more problematic, assumption underlying partial-equilibrium analysis: that producers actually know the prices that they will pay for the inputs and resources to be used in producing their outputs. The cost curves of the standard economic analysis of the firm from which the supply curves of partial-equilibrium analysis are derived, presume that the prices of all inputs and factors of production correspond to those that are consistent with general equilibrium. But general-equilibrium prices are never known by anyone except the hypothetical agents in a general-equilibrium model with complete markets, or by agents endowed with perfect foresight (aka rational expectations in the strict sense of that misunderstood term).

At bottom, Marshallian partial-equilibrium analysis is comparative statics: a comparison of two alternative (hypothetical) equilibria distinguished by some difference in the parameters characterizing the two equilibria. By comparing the equilibria corresponding to the different parameter values, the analyst can infer the effect (at least directionally) of a parameter change.

But comparative-statics analysis is subject to a serious limitation: comparing two alternative hypothetical equilibria is very different from making empirical predictions about the effects of an actual parameter change in real time.

Comparing two alternative equilibria corresponding to different values of a parameter may be suggestive of what could happen after a policy decision to change that parameter, but there are many reasons why the change implied by the comparative-statics exercise might not match or even approximate the actual change.

First, the initial state was almost certainly not an equilibrium state, so systemic changes will be difficult, if not impossible, to disentangle from the effect of parameter change implied by the comparative-statics exercise.

Second, even if the initial state was an equilibrium, the transition to a new equilibrium is never instantaneous. The transitional period therefore leads to changes that in turn induce further systemic changes that cause the new equilibrium toward which the system gravitates to differ from the final equilibrium of the comparative-statics exercise.

Third, each successive change in the final equilibrium toward which the system is gravitating leads to further changes that in turn keep changing the final equilibrium. There is no reason why the successive changes lead to convergence on any final equilibrium end state. Nor is there any theoretical proof that the adjustment path leading from one equilibrium to another ever reaches an equilibrium end state. The gap between the comparative-statics exercise and the theory of adjustment in real time remains unbridged and may, even in principle, be unbridgeable.

Finally, without a complete system of forward and state-contingent markets, equilibrium requires not just that current prices converge to equilibrium prices; it requires that expectations of all agents about future prices converge to equilibrium expectations of future prices. Unless, agents’ expectations of future prices converge to their equilibrium values, an equilibrium many not even exist, let alone be approached or attained.

So the Marshallian assumption that producers know their costs of production and make production and pricing decisions based on that knowledge is both factually wrong and logically untenable. Nor do producers know what the demand curves for their products really looks like, except in the extreme case in which suppliers take market prices to be parametrically determined. But even then, they make decisions not on known prices, but on expected prices. Their expectations are constantly being tested against market information about actual prices, information that causes decision makers to affirm or revise their expectations in light of the constant flow of new information about prices and market conditions.

I don’t reject partial-equilibrium analysis, but I do call attention to its limitations, and to its unsuitability as a supposedly essential foundation for macroeconomic analysis, especially inasmuch as microeconomic analysis, AKA partial-equilibrium analysis, is utterly dependent on the uneasy macrofoundation of general-equilibrium theory. The intuition of Marshallian partial equilibrium cannot fil the gap, long ago noted by Kenneth Arrow, in the neoclassical theory of equilibrium price adjustment.

What’s so Great about Supply-Demand Analysis?

Just about the first thing taught to economics students is that there are demand curves for goods and services and supply curves of goods and services. Demand curves show how much customers wish to buy of a particular good or service within a period of time at various prices that might be charged for that good or service. The supply curve shows how much suppliers of a good or service would offer to sell at those prices.

Economists assume, and given certain more basic assumptions can (almost) prove, that customers will seek to buy less at higher prices for a good or service than at lower prices. Similarly, they assume that suppliers of the good or service offer to sell more at higher prices than at lower prices. Reflecting those assumptions, demand curves are downward-sloping and supply curve are upward-sloping. An upward-sloping supply curve is likely to intersect a downward-sloping demand curve at a single point, which corresponds to an equilibrium that allows customers to buy as much as they want to and suppliers to sell as much as they want to in the relevant time period.

This analysis is the bread and butter of economics. It leads to the conclusion that, when customers can’t buy as much as they would like, the price goes up, and, when suppliers can’t sell as much as they would like, the price goes down. So the natural tendency in any market is for the price to rise if it’s less than the equilibrium price, and to fall if it’s greater than the equilibrium price. This is the logic behind letting the market determine prices.

It can also be shown, if some further assumptions are made, that the intersection of the supply and demand curves represents an optimal allocation of resources in the sense that the total value of output is maximized. The necessary assumptions are, first, that the demand curve measures the marginal value placed on additional units of output, and, second, that the supply curve measures the marginal cost of producing additional units of output. The intersection of the supply and the demand curves corresponds to the maximization of the total value of output, because the marginal cost represents the value of output that could have been produced if the resources devoted to producing the good in question had been shifted to more valuable uses. When the supply curve rises above the demand curve it means that the resources would produce a greater value if devoted to producing something else than the value of the additional output of the good in question.

There is much to be said for the analysis, and it would be wrong to dismiss it. But it’s also important to understand its limitations, and, especially, the implicit assumptions on which it relies. In a sense, supply-demand analysis is foundational, the workhorse model that is the first resort of economists. But its role as a workhorse model does not automatically render analyses untethered to supply and demand illegitimate.

Supply-demand analysis has three key functions. First, it focuses attention on the idea of an equilibrium price at which all buyers can buy as much as they would like, and all sellers can sell as much as they would like. In a typical case, with an upward sloping supply curve and a downward-sloping demand curve, there is one, and only one, price with that property.

Second, as explained above, there is a sense in which that equilibrium price, aside from enabling the mutual compatibility of buyers’ and sellers’ plans to buy or to sell, has optimal properties.

Third, it’s a tool for predicting how changes in market conditions, like imposing a sales or excise tax, affect customers and suppliers. It compares two equilibrium positions on the assumption that only one parameter changes and predicts the effect of the parameter change by comparing the new and old equilibria. It’s the prototype for the comparative-statics method.

The chief problem with supply-demand analysis is that it requires a strict ceteris-paribus assumption, so that everything but the price and the quantity of the good under analysis remains constant. For many reasons, that assumption can’t literally be true. If the price of the good rises (falls), the real income of consumers decreases (increases). And if the price rises (falls), suppliers likely pay more (less) for their inputs. Changes in the price of one good also affect the prices of other goods, which, in turn, may affect the demand for the good under analysis. Each of those consequences would cause the supply and demand curves to shift from their initial positions. How much the ceteris-paribus assumption matters depends on how much of their incomes consumers spend on the good under analysis. The more they spend, the less plausible the ceteris paribus assumption.

But another implicit assumption underlies supply-demand analysis: that the economic system starts from a state of general equilibrium. Why must this assumption be made? The answer is that it‘s implied by the ceteris-paribus assumption that all other prices remain constant. Unless other markets are in equilibrium, it can’t be assumed that all other prices and incomes remain constant; if they aren’t, then prices for other goods, and for inputs used to produce the product under analysis, will change, violating the ceteris-paribus assumption. Unless the prices (and wages) of the inputs used to produce the good under analysis remain constant, the supply curve of the product can’t be assumed to remain unchanged.

On top of that, Walras’s Law implies that if one market is in disequilibrium, then at least one other market must also be in disequilibrium. So an internal contradiction lies at the heart of supply-demand analysis. The contradiction can be avoided, but not resolved, only by assuming that the market being analyzed is so minute relative to the rest of the economy, or so isolated from all other markets, that a disturbance in that market that changes its equilibrium position either wouldn’t disrupt the existing equilibrium in all other markets, or that the disturbances to the equilibria in all the other markets are so small that they can be safely ignored.

But we’re not done yet. The underlying general equilibrium on which the partial equilibrium (supply-demand) analysis is based, exists only conceptually, not in reality. Although it’s possible to prove the existence of such an equilibrium under more or less mathematically plausible assumptions about convexity and the continuity of the relevant functions, it is less straightforward to prove that the equilibrium is unique, or at least locally stable. If it is not unique or locally stable, there is no guarantee that comparative statics is possible, because a displacement from an unstable equilibrium may cause an unpredictable adjustment violates the ceteris-paribus assumption.

Finally, and perhaps most problematic, comparative statics is merely a comparison of two alternative equilibria, neither of which can be regarded as the outcome of a theoretically explicable, much less practical, process leading from initial conditions to the notional equilibrium state. Accordingly, neither is there any process whereby a disturbance to – a parameter change in — an initial equilibrium would lead from the initial equilibrium to a new equilibrium. That is what comparative statics means: the comparison of two alternative and disconnected equilibria. There is no transition from one to the other merely a comparison of the difference between them attributable to the change in a particular parameter in the initial conditions underlying the equilibria.

Given all the assumptions that must be satisfied for the basic implications of conventional supply-demand analysis to be unambiguously valid, that analysis obviously cannot provide demonstrably true predictions. As just explained, the comparative-statics method in general and supply-demand analysis in particular provide no actual predictions; they are merely conjectural comparisons of alternative notional equilibria.

The ceteris paribus assumption is often dismissed as making any theory tautological and untestable. If an ad hoc assumption introduced when observations don’t match the predictions derived from a given theory is independently testable, it adds to the empirical content of the theory, as demonstrated by the ad hoc assumption of an eighth planet (Neptune) in our solar system when predictions about the orbits of the seven known planets did not accord with their observed orbits.

Friedman’s famous methodological argument that only predictions, not assumptions, matter is clearly wrong. Economists have to be willing to modify assumptions and infer the implications that follow from modified or supplementary assumptions rather than take for granted that assumptions cannot meaningfully and productively affect the implications of a general analytical approach. It would be a travesty if physicists maintained the no-friction assumption, because it’s just a simplifying assumption to make the analysis tractable. That approach is a prescription for scientific stagnation.

The art of economics is to identify the key assumptions that ought to be modified to make a general analytical approach relevant and fruitful. When they are empirically testable, ad hoc assumptions that modify the ceteris paribus restriction constitute scientific advance.

But it’s important to understand how tenuous the connection is between the formalism of supply-demand analysis and of the comparative-statics method and the predictive power of that analysis and that method. The formalism stops far short of being able to generate clear and unambiguous conditions. The relationship between the formalism and the real world is tenuous and the apparent logical rigor of the formalism must be supplemented by notable and sometimes embarrassing doses of hand-waving or question-begging.

And it is also worth remembering the degree to which the supposed rigor of neoclassical microeconomic supply-demand formalism depends on the macroeconomic foundation of the existence (and at least approximate reality) of a unique or locally stable general equilibrium.

A Tale of Two Syntheses

I recently finished reading a slender, but weighty, collection of essays, Microfoundtions Reconsidered: The Relationship of Micro and Macroeconomics in Historical Perspective, edited by Pedro Duarte and Gilberto Lima; it contains in addition to a brief introductory essay by the editors, and contributions by Kevin Hoover, Robert Leonard, Wade Hands, Phil Mirowski, Michel De Vroey, and Pedro Duarte. The volume is both informative and stimulating, helping me to crystalize ideas about which I have been ruminating and writing for a long time, but especially in some of my more recent posts (e.g., here, here, and here) and my recent paper “Hayek, Hicks, Radner and Four Equilibrium Concepts.”

Hoover’s essay provides a historical account of the microfoundations, making clear that the search for microfoundations long preceded the Lucasian microfoundations movement of the 1970s and 1980s that would revolutionize macroeconomics in the late 1980s and early 1990s. I have been writing about the differences between varieties of microfoundations for quite a while (here and here), and Hoover provides valuable detail about early discussions of microfoundations and about their relationship to the now regnant Lucasian microfoundations dogma. But for my purposes here, Hoover’s key contribution is his deconstruction of the concept of microfoundations, showing that the idea of microfoundations depends crucially on the notion that agents in a macroeconomic model be explicit optimizers, meaning that they maximize an explicit function subject to explicit constraints.

What Hoover clarifies is vacuity of the Lucasian optimization dogma. Until Lucas, optimization by agents had been merely a necessary condition for a model to be microfounded. But there was also another condition: that the optimizing choices of agents be mutually consistent. Establishing that the optimizing choices of agents are mutually consistent is not necessarily easy or even possible, so often the consistency of optimizing plans can only be suggested by some sort of heuristic argument. But Lucas and his cohorts, followed by their acolytes, unable to explain, even informally or heuristically, how the optimizing choices of individual agents are rendered mutually consistent, instead resorted to question-begging and question-dodging techniques to avoid addressing the consistency issue, of which one — the most egregious, but not the only — is the representative agent. In so doing, Lucas et al. transformed the optimization problem from the coordination of multiple independent choices into the optimal plan of a single decision maker. Heckuva job!

The second essay by Robert Leonard, though not directly addressing the question of microfoundations, helps clarify and underscore the misrepresentation perpetrated by the Lucasian microfoundational dogma in disregarding and evading the need to describe a mechanism whereby the optimal choices of individual agents are, or could be, reconciled. Leonard focuses on a particular economist, Oskar Morgenstern, who began his career in Vienna as a not untypical adherent of the Austrian school of economics, a member of the Mises seminar and successor of F. A. Hayek as director of the Austrian Institute for Business Cycle Research upon Hayek’s 1931 departure to take a position at the London School of Economics. However, Morgenstern soon began to question the economic orthodoxy of neoclassical economic theory and its emphasis on the tendency of economic forces to reach a state of equilibrium.

In his famous early critique of the foundations of equilibrium theory, Morgenstern tried to show that the concept of perfect foresight, upon which, he alleged, the concept of equilibrium rests, is incoherent. To do so, Morgenstern used the example of the Holmes-Moriarity interaction in which Holmes and Moriarty are caught in a dilemma in which neither can predict whether the other will get off or stay on the train on which they are both passengers, because the optimal choice of each depends on the choice of the other. The unresolvable conflict between Holmes and Moriarty, in Morgenstern’s view, showed that the incoherence of the idea of perfect foresight.

As his disillusionment with orthodox economic theory deepened, Morgenstern became increasingly interested in the potential of mathematics to serve as a tool of economic analysis. Through his acquaintance with the mathematician Karl Menger, the son of Carl Menger, founder of the Austrian School of economics. Morgenstern became close to Menger’s student, Abraham Wald, a pure mathematician of exceptional ability, who, to support himself, was working on statistical and mathematical problems for the Austrian Institute for Business Cycle Resarch, and tutoring Morgenstern in mathematics and its applications to economic theory. Wald, himself, went on to make seminal contributions to mathematical economics and statistical analysis.

Moregenstern also became acquainted with another student of Menger, John von Neumnn, with an interest in applying advanced mathematics to economic theory. Von Neumann and Morgenstern would later collaborate in writing The Theory of Games and Economic Behavior, as a result of which Morgenstern came to reconsider his early view of the Holmes-Moriarty paradox inasmuch as it could be shown that an equilibrium solution of their interaction could be found if payoffs to their joint choices were specified, thereby enabling Holmes and Moriarty to choose optimal probablistic strategies.

I don’t think that the game-theoretic solution to the Holmes Moriarty game is as straightforward as Morgenstern eventually agreed, but the critical point in the microfoundations discussion is that the mathematical solution to the Holmes-Moriarty paradox acknowledges the necessity for the choices made by two or more agents in an economic or game-theoretic equilibrium to be reconciled – i.e., rendered mutually consistent — in equilibrium. Under Lucasian microfoundations dogma, the problem is either annihilated by positing an optimizing representative agent having no need to coordinate his decision with other agents (I leave the question who, in the Holmes-Moriarty interaction, is the representative agent as an exercise for the reader) or it is assumed away by positing the existence of a magical equilibrium with no explanation of how the mutually consistent choices are arrived at.

The third essay (“The Rise and Fall of Walrasian Economics: The Keynes Effect”) by Wade Hands considers the first of the two syntheses – the neoclassical synthesis — that are alluded to in the title of this post. Hands gives a learned account of the mutually reinforcing co-development of Walrasian general equilibrium theory and Keynesian economics in the 25 years or so following World War II. Although Hands agrees that there is no necessary connection between Walrasian GE theory and Keynesian theory, he argues that there was enough common ground between Keynesians and Walrasians, as famously explained by Hicks in summarizing Keynesian theory by way of his IS-LM model, to allow the two disparate research programs to nourish each other in a kind of symbiotic relationship as the two research programs came to dominate postwar economics.

The task for Keynesian macroeconomists following the lead of Samuelson, Solow and Modigliani at MIT, Alvin Hansen at Harvard and James Tobin at Yale was to elaborate the Hicksian IS-LM approach by embedding it in a more general Walrasian framework. In so doing, they helped to shape a research agenda for Walrasian general-equilibrium theorists working out the details of the newly developed Arrow-Debreu model, deriving conditions for the uniqueness and stability of the equilibrium of that model. The neoclassical synthesis followed from those efforts, achieving an uneasy reconciliation between Walrasian general equilibrium theory and Keynesian theory. It received its most complete articulation in the impressive treatise of Don Patinkin which attempted to derive or at least evaluate key Keyensian propositions in the context of a full general equilibrium model. At an even higher level of theoretical sophistication, the 1971 summation of general equilibrium theory by Arrow and Hahn, gave disproportionate attention to Keynesian ideas which were presented and analyzed using the tools of state-of-the art Walrasian analysis.

Hands sums up the coexistence of Walrasian and Keynesian ideas in the Arrow-Hahn volume as follows:

Arrow and Hahn’s General Competitive Analysis – the canonical summary of the literature – dedicated far more pages to stability than to any other topic. The book had fourteen chapters (and a number of mathematical appendices); there was one chapter on consumer choice, one chapter on production theory, and one chapter on existence [of equilibrium], but there were three chapters on stability analysis, (two on the traditional tatonnement and one on alternative ways of modeling general equilibrium dynamics). Add to this the fact that there was an important chapter on “The Keynesian Model’; and it becomes clear how important stability analysis and its connection to Keynesian economics was for Walrasian microeconomics during this period. The purpose of this section has been to show that that would not have been the case if the Walrasian economics of the day had not been a product of co-evolution with Keynesian economic theory. (p. 108)

What seems most unfortunate about the neoclassical synthesis is that it elevated and reinforced the least relevant and least fruitful features of both the Walrasian and the Keynesian research programs. The Hicksian IS-LM setup abstracted from the dynamic and forward-looking aspects of Keynesian theory, modeling a static one-period model, not easily deployed as a tool of dynamic analysis. Walrasian GE analysis, which, following the pathbreaking GE existence proofs of Arrow and Debreu, then proceeded to a disappointing search for the conditions for a unique and stable general equilibrium.

It was Paul Samuelson who, building on Hicks’s pioneering foray into stability analysis, argued that the stability question could be answered by investigating whether a system of Lyapounov differential equations could describe market price adjustments as functions of market excess demands that would converge on an equilibrium price vector. But Samuelson’s approach to establishing stability required the mechanism of a fictional tatonnement process. Even with that unsatisfactory assumption, the stability results were disappointing.

Although for Walrasian theorists the results hardly repaid the effort expended, for those Keynesians who interpreted Keynes as an instability theorist, the weak Walrasian stability results might have been viewed as encouraging. But that was not any easy route to take either, because Keynes had also argued that a persistent unemployment equilibrium might be the norm.

It’s also hard to understand how the stability of equilibrium in an imaginary tatonnement process could ever have been considered relevant to the operation of an actual economy in real time – a leap of faith almost as extraordinary as imagining an economy represented by a single agent. Any conventional comparative-statics exercise – the bread and butter of microeconomic analysis – involves comparing two equilibria, corresponding to a specified parametric change in the conditions of the economy. The comparison presumes that, starting from an equilibrium position, the parametric change leads from an initial to a new equilibrium. If the economy isn’t stable, a disturbance causing an economy to depart from an initial equilibrium need not result in an adjustment to a new equilibrium comparable to the old one.

If conventional comparative statics hinges on an implicit stability assumption, it’s hard to see how a stability analysis of tatonnement has any bearing on the comparative-statics routinely relied upon by economists. No actual economy ever adjusts to a parametric change by way of tatonnement. Whether a parametric change displacing an economy from its equilibrium time path would lead the economy toward another equilibrium time path is another interesting and relevant question, but it’s difficult to see what insight would be gained by proving the stability of equilibrium under a tatonnement process.

Moreover, there is a distinct question about the endogenous stability of an economy: are there endogenous tendencies within an economy that lead it away from its equilibrium time path. But questions of endogenous stability can only be posed in a dynamic, rather than a static, model. While extending the Walrasian model to include an infinity of time periods, Arrow and Debreu telescoped determination of the intertemporal-equilibrium price vector into a preliminary time period before time, production, exchange and consumption begin. So, even in the formally intertemporal Arrow-Debreu model, the equilibrium price vector, once determined, is fixed and not subject to revision. Standard stability analysis was concerned with the response over time to changing circumstances only insofar as changes are foreseen at time zero, before time begins, so that they can be and are taken fully into account when the equilibrium price vector is determined.

Though not entirely uninteresting, the intertemporal analysis had little relevance to the stability of an actual economy operating in real time. Thus, neither the standard Keyensian (IS-LM) model nor the standard Walrasian Arrow-Debreu model provided an intertemporal framework within which to address the dynamic stability that Keynes (and contemporaries like Hayek, Myrdal, Lindahl and Hicks) had developed in the 1930s. In particular, Hicks’s analytical device of temporary equilibrium might have facilitated such an analysis. But, having introduced his IS-LM model two years before publishing his temporary equilibrium analysis in Value and Capital, Hicks concentrated his attention primarily on Keynesian analysis and did not return to the temporary equilibrium model until 1965 in Capital and Growth. And it was IS-LM that became, for a generation or two, the preferred analytical framework for macroeconomic analysis, while temproary equilibrium remained overlooked until the 1970s just as the neoclassical synthesis started coming apart.

The fourth essay by Phil Mirowski investigates the role of the Cowles Commission, based at the University of Chicago from 1939 to 1955, in undermining Keynesian macroeconomics. While Hands argues that Walrasians and Keynesians came together in a non-hostile spirit of tacit cooperation, Mirowski believes that owing to their Walrasian sympathies, the Cowles Committee had an implicit anti-Keynesian orientation and was therefore at best unsympathetic if not overtly hostile to Keynesian theorizing, which was incompatible the Walrasian optimization paradigm endorsed by the Cowles economists. (Another layer of unexplored complexity is the tension between the Walrasianism of the Cowles economists and the Marshallianism of the Chicago School economists, especially Knight and Friedman, which made Chicago an inhospitable home for the Cowles Commission and led to its eventual departure to Yale.)

Whatever differences, both the Mirowski and the Hands essays support the conclusion that the uneasy relationship between Walrasianism and Keynesianism was inherently problematic and unltimately unsustainable. But to me the tragedy is that before the fall, in the 1950s and 1960s, when the neoclassical synthesis bestrode economics like a colossus, the static orientation of both the Walrasian and the Keynesian research programs combined to distract economists from a more promising research program. Such a program, instead of treating expectations either as parametric constants or as merely adaptive, based on an assumed distributed lag function, might have considered whether expectations could perform a potentially equilibrating role in a general equilibrium model.

The equilibrating role of expectations, though implicit in various contributions by Hayek, Myrdal, Lindahl, Irving Fisher, and even Keynes, is contingent so that equilibrium is not inevitable, only a possibility. Instead, the introduction of expectations as an equilibrating variable did not occur until the mid-1970s when Robert Lucas, Tom Sargent and Neil Wallace, borrowing from John Muth’s work in applied microeconomics, introduced the idea of rational expectations into macroeconomics. But in introducing rational expectations, Lucas et al. made rational expectations not the condition of a contingent equilibrium but an indisputable postulate guaranteeing the realization of equilibrium without offering any theoretical account of a mechanism whereby the rationality of expectations is achieved.

The fifth essay by Michel DeVroey (“Microfoundations: a decisive dividing line between Keynesian and new classical macroeconomics?”) is a philosophically sophisticated analysis of Lucasian microfoundations methodological principles. DeVroey begins by crediting Lucas with the revolution in macroeconomics that displaced a Keynesian orthodoxy already discredited in the eyes of many economists after its failure to account for simultaneously rising inflation and unemployment.

The apparent theoretical disorder characterizing the Keynesian orthodoxy and its Monetarist opposition left a void for Lucas to fill by providing a seemingly rigorous microfounded alternative to the confused state of macroeconomics. And microfoundations became the methodological weapon by which Lucas and his associates and followers imposed an iron discipline on the unruly community of macroeconomists. “In Lucas’s eyes,” DeVroey aptly writes,“ the mere intention to produce a theory of involuntary unemployment constitutes an infringement of the equilibrium discipline.” Showing that his description of Lucas is hardly overstated, DeVroey quotes from the famous 1978 joint declaration of war issued by Lucas and Sargent against Keynesian macroeconomics:

After freeing himself of the straightjacket (or discipline) imposed by the classical postulates, Keynes described a model in which rules of thumb, such as the consumption function and liquidity preference schedule, took the place of decision functions that a classical economist would insist be derived from the theory of choice. And rather than require that wages and prices be determined by the postulate that markets clear – which for the labor market seemed patently contradicted by the severity of business depressions – Keynes took as an unexamined postulate that money wages are sticky, meaning that they are set at a level or by a process that could be taken as uninfluenced by the macroeconomic forces he proposed to analyze.

Echoing Keynes’s famous description of the sway of Ricardian doctrines over England in the nineteenth century, DeVroey remarks that the microfoundations requirement “conquered macroeconomics as quickly and thoroughly as the Holy Inquisition conquered Spain,” noting, even more tellingly, that the conquest was achieved without providing any justification. Ricardo had, at least, provided a substantive analysis that could be debated; Lucas offered only an undisputable methodological imperative about the sole acceptable mode of macroeconomic reasoning. Just as optimization is a necessary component of the equilibrium discipline that had to be ruthlessly imposed on pain of excommunication from the macroeconomic community, so, too, did the correlate principle of market-clearing. To deviate from the market-clearing postulate was ipso facto evidence of an impure and heretical state of mind. DeVroey further quotes from the war declaration of Lucas and Sargent.

Cleared markets is simply a principle, not verifiable by direct observation, which may or may not be useful in constructing successful hypotheses about the behavior of these [time] series.

What was only implicit in the war declaration became evident later after right-thinking was enforced, and woe unto him that dared deviate from the right way of thinking.

But, as DeVroey skillfully shows, what is most remarkable is that, having declared market clearing an indisputable methodological principle, Lucas, contrary to his own demand for theoretical discipline, used the market-clearing postulate to free himself from the very equilibrium discipline he claimed to be imposing. How did the market-clearing postulate liberate Lucas from equilibrium discipline? To show how the sleight-of-hand was accomplished, DeVroey, in an argument parallel to that of Hoover in chapter one and that suggested by Leonard in chapter two, contrasts Lucas’s conception of microfoundations with a different microfoundations conception espoused by Hayek and Patinkin. Unlike Lucas, Hayek and Patinkin recognized that the optimization of individual economic agents is conditional on the optimization of other agents. Lucas assumes that if all agents optimize, then their individual optimization ensures that a social optimum is achieved, the whole being the sum of its parts. But that assumption ignores that the choices made interacting agents are themelves interdependent.

To capture the distinction between independent and interdependent optimization, DeVroey distinguishes between optimal plans and optimal behavior. Behavior is optimal only if an optimal plan can be executed. All agents can optimize individually in making their plans, but the optimality of their behavior depends on their capacity to carry those plans out. And the capacity of each to carry out his plan is contingent on the optimal choices of all other agents.

Optimizing plans refers to agents’ intentions before the opening of trading, the solution to the choice-theoretical problem with which they are faced. Optimizing behavior refers to what is observable after trading has started. Thus optimal behavior implies that the optimal plan has been realized. . . . [O]ptmizing plans and optimizing behavior need to be logically separated – there is a difference between finding a solution to a choice problem and implementing the solution. In contrast, whenever optimizing behavior is the sole concept used, the possibility of there being a difference between them is discarded by definition. This is the standpoint takenby Lucas and Sargent. Once it is adopted, it becomes misleading to claim . . .that the microfoundations requirement is based on two criteria, optimizing behavior and market clearing. A single criterion is needed, and it is irrelevant whether this is called generalized optimizing behavior or market clearing. (De Vroey, p. 176)

Each agent is free to optimize his plan, but no agent can execute his optimal plan unless the plan coincides with the complementary plans of other agents. So, the execution of an optimal plan is not within the unilateral control of an agent formulating his own plan. One can readily assume that agents optimize their plans, but one cannot just assume that those plans can be executed as planned. The optimality of interdependent plans is not self-evident; it is a proposition that must be demonstrated. Assuming that agents optimize, Lucas simply asserts that, because agents optimize, markets must clear.

That is a remarkable non-sequitur. And from that non-sequitur, Lucas jumps to a further non-sequitur: that an optimizing representative agent is all that’s required for a macroeconomic model. The logical straightjacket (or discipline) of demonstrating that interdependent optimal plans are consistent is thus discarded (or trampled upon). Lucas’s insistence on a market-clearing principle turns out to be subterfuge by which the pretense of its upholding conceals its violation in practice.

My own view is that the assumption that agents formulate optimizing plans cannot be maintained without further analysis unless the agents are operating in isolation. If the agents interacting with each other, the assumption that they optimize requires a theory of their interaction. If the focus is on equilibrium interactions, then one can have a theory of equilibrium, but then the possibility of non-equilibrium states must also be acknowledged.

That is what John Nash did in developing his equilibrium theory of positive-sum games. He defined conditions for the existence of equilibrium, but he offered no theory of how equilibrium is achieved. Lacking such a theory, he acknowledged that non-equilibrium solutions might occur, e.g., in some variant of the Holmes-Moriarty game. To simply assert that because interdependent agents try to optimize, they must, as a matter of principle, succeed in optimizing is to engage in question-begging on a truly grand scale. To insist, as a matter of methodological principle, that everyone else must also engage in question-begging on equally grand scale is what I have previously called methodological arrogance, though an even harsher description might be appropriate.

In the sixth essay (“Not Going Away: Microfoundations in the making of a new consensus in macroeconomics”), Pedro Duarte considers the current state of apparent macroeconomic consensus in the wake of the sweeping triumph of the Lucasian micorfoundtions methodological imperative. In its current state, mainstream macroeconomists from a variety of backgrounds have reconciled themselves and adjusted to the methodological absolutism Lucas and his associates and followers have imposed on macroeconomic theorizing. Leading proponents of the current consensus are pleased to announce, in unseemly self-satisfaction, that macroeconomics is now – but presumably not previously – “firmly grounded in the principles of economic [presumably neoclassical] theory.” But the underlying conception of neoclassical economic theory motivating such a statement is almost laughably narrow, and, as I have just shown, strictly false even if, for argument’s sake, that narrow conception is accepted.

Duarte provides an informative historical account of the process whereby most mainstream Keynesians and former old-line Monetarists, who had, in fact, adopted much of the underlying Keynesian theoretical framework themselves, became reconciled to the non-negotiable methodological microfoundational demands upon which Lucas and his New Classical followers and Real-Business-Cycle fellow-travelers insisted. While Lucas was willing to tolerate differences of opinion about the importance of monetary factors in accounting for business-cycle fluctuations in real output and employment, and even willing to countenance a role for countercyclical monetary policy, such differences of opinion could be tolerated only if they could be derived from an acceptable microfounded model in which the agent(s) form rational expectations. If New Keynesians were able to produce results rationalizing countercyclical policies in such microfounded models with rational expectations, Lucas was satisfied. Presumably, Lucas felt the price of conceding the theoretical legitimacy of countercyclical policy was worth paying in order to achieve methodological hegemony over macroeconomic theory.

And no doubt, for Lucas, the price was worth paying, because it led to what Marvin Goodfriend and Robert King called the New Neoclassical Synthesis in their 1997 article ushering in the new era of good feelings, a synthesis based on “the systematic application of intertemporal optimization and rational expectations” while embodying “the insights of monetarists . . . regarding the theory and practice of monetary policy.”

While the first synthesis brought about a convergence of sorts between the disparate Walrasian and Keynesian theoretical frameworks, the convergence proved unstable because the inherent theoretical weaknesses of both paradigms were unable to withstand criticisms of the theoretical apparatus and of the policy recommendations emerging from that synthesis, particularly an inability to provide a straightforward analysis of inflation when it became a serious policy problem in the late 1960s and 1970s. But neither the Keynesian nor the Walrasian paradigms were developing in a way that addressed the points of most serious weakness.

On the Keynesian side, the defects included the static nature of the workhorse IS-LM model, the absence of a market for real capital and of a market for endogenous money. On the Walrasian side, the defects were the lack of any theory of actual price determination or of dynamic adjustment. The Hicksian temporary equilibrium paradigm might have provided a viable way forward, and for a very different kind of synthesis, but not even Hicks himself realized the potential of his own creation.

While the first synthesis was a product of convenience and misplaced optimism, the second synthesis is a product of methodological hubris and misplaced complacency derived from an elementary misunderstanding of the distinction between optimization by a single agent and the simultaneous optimization of two or more independent, yet interdependent, agents. The equilibrium of each is the result of the equilibrium of all, and a theory of optimization involving two or more agents requires a theory of how two or more interdependent agents can optimize simultaneously. The New neoclassical synthesis rests on the demand for a macroeconomic theory of individual optimization that refuses even to ask, let along provide an answer to, the question whether the optimization that it demands is actually achieved in practice or what happens if it is not. This is not a synthesis that will last, or that deserves to. And the sooner it collapses, the better off macroeconomics will be.

What the answer is I don’t know, but if I had to offer a suggestion, the one offered by my teacher Axel Leijonhufvud towards the end of his great book, written more than half a century ago, strikes me as not bad at all:

One cannot assume that what went wrong was simply that Keynes slipped up here and there in his adaptation of standard tool, and that consequently, if we go back and tinker a little more with the Marshallian toolbox his purposes will be realized. What is required, I believe, is a systematic investigation, form the standpoint of the information problems stressed in this study, of what elements of the static theory of resource allocation can without further ado be utilized in the analysis of dynamic and historical systems. This, of course, would be merely a first-step: the gap yawns very wide between the systematic and rigorous modern analysis of the stability of “featureless,” pure exchange systems and Keynes’ inspired sketch of the income-constrained process in a monetary-exchange-cum-production system. But even for such a first step, the prescription cannot be to “go back to Keynes.” If one must retrace some steps of past developments in order to get on the right track—and that is probably advisable—my own preference is to go back to Hayek. Hayek’s Gestalt-conception of what happens during business cycles, it has been generally agreed, was much less sound than Keynes’. As an unhappy consequence, his far superior work on the fundamentals of the problem has not received the attention it deserves. (p. 401)

I agree with all that, but would also recommend Roy Radner’s development of an alternative to the Arrow-Debreu version of Walrasian general equilibrium theory that can accommodate Hicksian temporary equilibrium, and Hawtrey’s important contributions to our understanding of monetary theory and the role and potential instability of endogenous bank money. On top of that, Franklin Fisher in his important work, The Disequilibrium Foundations of Equilibrium Economics, has given us further valuable guidance in how to improve the current sorry state of macroeconomics.

 

Filling the Arrow Explanatory Gap

The following (with some minor revisions) is a Twitter thread I posted yesterday. Unfortunately, because it was my first attempt at threading the thread wound up being split into three sub-threads and rather than try to reconnect them all, I will just post the complete thread here as a blogpost.

1. Here’s an outline of an unwritten paper developing some ideas from my paper “Hayek Hicks Radner and Four Equilibrium Concepts” (see here for an earlier ungated version) and some from previous blog posts, in particular Phillips Curve Musings

2. Standard supply-demand analysis is a form of partial-equilibrium (PE) analysis, which means that it is contingent on a ceteris paribus (CP) assumption, an assumption largely incompatible with realistic dynamic macroeconomic analysis.

3. Macroeconomic analysis is necessarily situated a in general-equilibrium (GE) context that precludes any CP assumption, because there are no variables that are held constant in GE analysis.

4. In the General Theory, Keynes criticized the argument based on supply-demand analysis that cutting nominal wages would cure unemployment. Instead, despite his Marshallian training (upbringing) in PE analysis, Keynes argued that PE (AKA supply-demand) analysis is unsuited for understanding the problem of aggregate (involuntary) unemployment.

5. The comparative-statics method described by Samuelson in the Foundations of Econ Analysis formalized PE analysis under the maintained assumption that a unique GE obtains and deriving a “meaningful theorem” from the 1st- and 2nd-order conditions for a local optimum.

6. PE analysis, as formalized by Samuelson, is conditioned on the assumption that GE obtains. It is focused on the effect of changing a single parameter in a single market small enough for the effects on other markets of the parameter change to be made negligible.

7. Thus, PE analysis, the essence of micro-economics is predicated on the macrofoundation that all, but one, markets are in equilibrium.

8. Samuelson’s meaningful theorems were a misnomer reflecting mid-20th-century operationalism. They can now be understood as empirically refutable propositions implied by theorems augmented with a CP assumption that interactions b/w markets are small enough to be neglected.

9. If a PE model is appropriately specified, and if the market under consideration is small or only minimally related to other markets, then differences between predictions and observations will be statistically insignificant.

10. So PE analysis uses comparative-statics to compare two alternative general equilibria that differ only in respect of a small parameter change.

11. The difference allows an inference about the causal effect of a small change in that parameter, but says nothing about how an economy would actually adjust to a parameter change.

12. PE analysis is conditioned on the CP assumption that the analyzed market and the parameter change are small enough to allow any interaction between the parameter change and markets other than the market under consideration to be disregarded.

13. However, the process whereby one equilibrium transitions to another is left undetermined; the difference between the two equilibria with and without the parameter change is computed but no account of an adjustment process leading from one equilibrium to the other is provided.

14. Hence, the term “comparative statics.”

15. The only suggestion of an adjustment process is an assumption that the price-adjustment in any market is an increasing function of excess demand in the market.

16. In his seminal account of GE, Walras posited the device of an auctioneer who announces prices–one for each market–computes desired purchases and sales at those prices, and sets, under an adjustment algorithm, new prices at which desired purchases and sales are recomputed.

17. The process continues until a set of equilibrium prices is found at which excess demands in all markets are zero. In Walras’s heuristic account of what he called the tatonnement process, trading is allowed only after the equilibrium price vector is found by the auctioneer.

18. Walras and his successors assumed, but did not prove, that, if an equilibrium price vector exists, the tatonnement process would eventually, through trial and error, converge on that price vector.

19. However, contributions by Sonnenschein, Mantel and Debreu (hereinafter referred to as the SMD Theorem) show that no price-adjustment rule necessarily converges on a unique equilibrium price vector even if one exists.

20. The possibility that there are multiple equilibria with distinct equilibrium price vectors may or may not be worth explicit attention, but for purposes of this discussion, I confine myself to the case in which a unique equilibrium exists.

21. The SMD Theorem underscores the lack of any explanatory account of a mechanism whereby changes in market prices, responding to excess demands or supplies, guide a decentralized system of competitive markets toward an equilibrium state, even if a unique equilibrium exists.

22. The Walrasian tatonnement process has been replaced by the Arrow-Debreu-McKenzie (ADM) model in an economy of infinite duration consisting of an infinite number of generations of agents with given resources and technology.

23. The equilibrium of the model involves all agents populating the economy over all time periods meeting before trading starts, and, based on initial endowments and common knowledge, making plans given an announced equilibrium price vector for all time in all markets.

24. Uncertainty is accommodated by the mechanism of contingent trading in alternative states of the world. Given assumptions about technology and preferences, the ADM equilibrium determines the set prices for all contingent states of the world in all time periods.

25. Given equilibrium prices, all agents enter into optimal transactions in advance, conditioned on those prices. Time unfolds according to the equilibrium set of plans and associated transactions agreed upon at the outset and executed without fail over the course of time.

26. At the ADM equilibrium price vector all agents can execute their chosen optimal transactions at those prices in all markets (certain or contingent) in all time periods. In other words, at that price vector, excess demands in all markets with positive prices are zero.

27. The ADM model makes no pretense of identifying a process that discovers the equilibrium price vector. All that can be said about that price vector is that if it exists and trading occurs at equilibrium prices, then excess demands will be zero if prices are positive.

28. Arrow himself drew attention to the gap in the ADM model, writing in 1959:

29. In addition to the explanatory gap identified by Arrow, another shortcoming of the ADM model was discussed by Radner: the dependence of the ADM model on a complete set of forward and state-contingent markets at time zero when equilibrium prices are determined.

30. Not only is the complete-market assumption a backdoor reintroduction of perfect foresight, it excludes many features of the greatest interest in modern market economies: the existence of money, stock markets, and money-crating commercial banks.

31. Radner showed that for full equilibrium to obtain, not only must excess demands in current markets be zero, but whenever current markets and current prices for future delivery are missing, agents must correctly expect those future prices.

32. But there is no plausible account of an equilibrating mechanism whereby price expectations become consistent with GE. Although PE analysis suggests that price adjustments do clear markets, no analogous analysis explains how future price expectations are equilibrated.

33. But if both price expectations and actual prices must be equilibrated for GE to obtain, the notion that “market-clearing” price adjustments are sufficient to achieve macroeconomic “equilibrium” is untenable.

34. Nevertheless, the idea that individual price expectations are rational (correct), so that, except for random shocks, continuous equilibrium is maintained, became the bedrock for New Classical macroeconomics and its New Keynesian and real-business cycle offshoots.

35. Macroeconomic theory has become a theory of dynamic intertemporal optimization subject to stochastic disturbances and market frictions that prevent or delay optimal adjustment to the disturbances, potentially allowing scope for countercyclical monetary or fiscal policies.

36. Given incomplete markets, the assumption of nearly continuous intertemporal equilibrium implies that agents correctly foresee future prices except when random shocks occur, whereupon agents revise expectations in line with the new information communicated by the shocks.
37. Modern macroeconomics replaced the Walrasian auctioneer with agents able to forecast the time path of all prices indefinitely into the future, except for intermittent unforeseen shocks that require agents to optimally their revise previous forecasts.
38. When new information or random events, requiring revision of previous expectations, occur, the new information becomes common knowledge and is processed and interpreted in the same way by all agents. Agents with rational expectations always share the same expectations.
39. So in modern macro, Arrow’s explanatory gap is filled by assuming that all agents, given their common knowledge, correctly anticipate current and future equilibrium prices subject to unpredictable forecast errors that change their expectations of future prices to change.
40. Equilibrium prices aren’t determined by an economic process or idealized market interactions of Walrasian tatonnement. Equilibrium prices are anticipated by agents, except after random changes in common knowledge. Semi-omniscient agents replace the Walrasian auctioneer.
41. Modern macro assumes that agents’ common knowledge enables them to form expectations that, until superseded by new knowledge, will be validated. The assumption is wrong, and the mistake is deeper than just the unrealism of perfect competition singled out by Arrow.
42. Assuming perfect competition, like assuming zero friction in physics, may be a reasonable simplification for some problems in economics, because the simplification renders an otherwise intractable problem tractable.
43. But to assume that agents’ common knowledge enables them to forecast future prices correctly transforms a model of decentralized decision-making into a model of central planning with each agent possessing the knowledge only possessed by an omniscient central planner.
44. The rational-expectations assumption fills Arrow’s explanatory gap, but in a deeply unsatisfactory way. A better approach to filling the gap would be to acknowledge that agents have private knowledge (and theories) that they rely on in forming their expectations.
45. Agents’ expectations are – at least potentially, if not inevitably – inconsistent. Because expectations differ, it’s the expectations of market specialists, who are better-informed than non-specialists, that determine the prices at which most transactions occur.
46. Because price expectations differ even among specialists, prices, even in competitive markets, need not be uniform, so that observed price differences reflect expectational differences among specialists.
47. When market specialists have similar expectations about future prices, current prices will converge on the common expectation, with arbitrage tending to force transactions prices to converge toward notwithstanding the existence of expectational differences.
48. However, the knowledge advantage of market specialists over non-specialists is largely limited to their knowledge of the workings of, at most, a small number of related markets.
49. The perspective of specialists whose expectations govern the actual transactions prices in most markets is almost always a PE perspective from which potentially relevant developments in other markets and in macroeconomic conditions are largely excluded.
50. The interrelationships between markets that, according to the SMD theorem, preclude any price-adjustment algorithm, from converging on the equilibrium price vector may also preclude market specialists from converging, even roughly, on the equilibrium price vector.
51. A strict equilibrium approach to business cycles, either real-business cycle or New Keynesian, requires outlandish assumptions about agents’ common knowledge and their capacity to anticipate the future prices upon which optimal production and consumption plans are based.
52. It is hard to imagine how, without those outlandish assumptions, the theoretical superstructure of real-business cycle theory, New Keynesian theory, or any other version of New Classical economics founded on the rational-expectations postulate can be salvaged.
53. The dominance of an untenable macroeconomic paradigm has tragically led modern macroeconomics into a theoretical dead end.

Hayek and Intertemporal Equilibrium

I am starting to write a paper on Hayek and intertemporal equilibrium, and as I write it over the next couple of weeks, I am going to post sections of it on this blog. Comments from readers will be even more welcome than usual, and I will do my utmost to reply to comments, a goal that, I am sorry to say, I have not been living up to in my recent posts.

The idea of equilibrium is an essential concept in economics. It is an essential concept in other sciences as well, its meaning in economics is not the same as in other disciplines. The concept having originally been borrowed from physics, the meaning originally attached to it by economists corresponded to the notion of a system at rest, and it took a long time for economists to see that viewing an economy as a system at rest was not the only, or even the most useful, way of applying the equilibrium concept to economic phenomena.

What would it mean for an economic system to be at rest? The obvious answer was to say that prices and quantities would not change. If supply equals demand in every market, and if there no exogenous change introduced into the system, e.g., in population, technology, tastes, etc., it would seem that would be no reason for the prices paid and quantities produced to change in that system. But that view of an economic system was a very restrictive one, because such a large share of economic activity – savings and investment — is predicated on the assumption and expectation of change.

The model of a stationary economy at rest in which all economic activity simply repeats what has already happened before did not seem very satisfying or informative, but that was the view of equilibrium that originally took hold in economics. The idea of a stationary timeless equilibrium can be traced back to the classical economists, especially Ricardo and Mill who wrote about the long-run tendency of an economic system toward a stationary state. But it was the introduction by Jevons, Menger, Walras and their followers of the idea of optimizing decisions by rational consumers and producers that provided the key insight for a more robust and fruitful version of the equilibrium concept.

If each economic agent (household or business firm) is viewed as making optimal choices based on some scale of preferences subject to limitations or constraints imposed by their capacities, endowments, technology and the legal system, then the equilibrium of an economy must describe a state in which each agent, given his own subjective ranking of the feasible alternatives, is making a optimal decision, and those optimal decisions are consistent with those of all other agents. The optimal decisions of each agent must simultaneously be optimal from the point of view of that agent while also being consistent, or compatible, with the optimal decisions of every other agent. In other words, the decisions of all buyers of how much to purchase must be consistent with the decisions of all sellers of how much to sell.

The idea of an equilibrium as a set of independently conceived, mutually consistent optimal plans was latent in the earlier notions of equilibrium, but it could not be articulated until a concept of optimality had been defined. That concept was utility maximization and it was further extended to include the ideas of cost minimization and profit maximization. Once the idea of an optimal plan was worked out, the necessary conditions for the mutual consistency of optimal plans could be articulated as the necessary conditions for a general economic equilibrium. Once equilibrium was defined as the consistency of optimal plans, the path was clear to define an intertemporal equilibrium as the consistency of optimal plans extending over time. Because current goods and services and otherwise identical goods and services in the future could be treated as economically distinct goods and services, defining the conditions for an intertemporal equilibrium was formally almost equivalent to defining the conditions for a static, stationary equilibrium. Just as the conditions for a static equilibrium could be stated in terms of equalities between marginal rates of substitution of goods in consumption and in production to their corresponding price ratios, an intertemporal equilibrium could be stated in terms of equalities between the marginal rates of intertemporal substitution in consumption and in production and their corresponding intertemporal price ratios.

The only formal adjustment required in the necessary conditions for static equilibrium to be extended to intertemporal equilibrium was to recognize that, inasmuch as future prices (typically) are unobservable, and hence unknown to economic agents, the intertemporal price ratios cannot be ratios between actual current prices and actual future prices, but, instead, ratios between current prices and expected future prices. From this it followed that for optimal plans to be mutually consistent, all economic agents must have the same expectations of the future prices in terms of which their plans were optimized.

The concept of an intertemporal equilibrium was first presented in English by F. A. Hayek in his 1937 article “Economics and Knowledge.” But it was through J. R. Hicks’s Value and Capital published two years later in 1939 that the concept became more widely known and understood. In explaining and applying the concept of intertemporal equilibrium and introducing the derivative concept of a temporary equilibrium in which current markets clear, but individual expectations of future prices are not the same, Hicks did not claim originality, but instead of crediting Hayek for the concept, or even mentioning Hayek’s 1937 paper, Hicks credited the Swedish economist Erik Lindahl, who had published articles in the early 1930s in which he had articulated the concept. But although Lindahl had published his important work on intertemporal equilibrium before Hayek’s 1937 article, Hayek had already explained the concept in a 1928 article “Das intertemporale Gleichgewichtasystem der Priese und die Bewegungen des ‘Geltwertes.'” (English translation: “Intertemporal price equilibrium and movements in the value of money.“)

Having been a junior colleague of Hayek’s in the early 1930s when Hayek arrived at the London School of Economics, and having come very much under Hayek’s influence for a few years before moving in a different theoretical direction in the mid-1930s, Hicks was certainly aware of Hayek’s work on intertemporal equilibrium, so it has long been a puzzle to me why Hicks did not credit Hayek along with Lindahl for having developed the concept of intertemporal equilibrium. It might be worth pursuing that question, but I mention it now only as an aside, in the hope that someone else might find it interesting and worthwhile to try to find a solution to that puzzle. As a further aside, I will mention that Murray Milgate in a 1979 article “On the Origin of the Notion of ‘Intertemporal Equilibrium’” has previously tried to redress the failure to credit Hayek’s role in introducing the concept of intertemporal equilibrium into economic theory.

What I am going to discuss in here and in future posts are three distinct ways in which the concept of intertemporal equilibrium has been developed since Hayek’s early work – his 1928 and 1937 articles but also his 1941 discussion of intertemporal equilibrium in The Pure Theory of Capital. Of course, the best known development of the concept of intertemporal equilibrium is the Arrow-Debreu-McKenzie (ADM) general-equilibrium model. But although it can be thought of as a model of intertemporal equilibrium, the ADM model is set up in such a way that all economic decisions are taken before the clock even starts ticking; the transactions that are executed once the clock does start simply follow a pre-determined script. In the ADM model, the passage of time is a triviality, merely a way of recording the sequential order of the predetermined production and consumption activities. This feat is accomplished by assuming that all agents are present at time zero with their property endowments in hand and capable of transacting – but conditional on the determination of an equilibrium price vector that allows all optimal plans to be simultaneously executed over the entire duration of the model — in a complete set of markets (including state-contingent markets covering the entire range of contingent events that will unfold in the course of time whose outcomes could affect the wealth or well-being of any agent with the probabilities associated with every contingent event known in advance).

Just as identical goods in different physical locations or different time periods can be distinguished as different commodities that cn be purchased at different prices for delivery at specific times and places, identical goods can be distinguished under different states of the world (ice cream on July 4, 2017 in Washington DC at 2pm only if the temperature is greater than 90 degrees). Given the complete set of state-contingent markets and the known probabilities of the contingent events, an equilibrium price vector for the complete set of markets would give rise to optimal trades reallocating the risks associated with future contingent events and to an optimal allocation of resources over time. Although the ADM model is an intertemporal model only in a limited sense, it does provide an ideal benchmark describing the characteristics of a set of mutually consistent optimal plans.

The seminal work of Roy Radner in relaxing some of the extreme assumptions of the ADM model puts Hayek’s contribution to the understanding of the necessary conditions for an intertemporal equilibrium into proper perspective. At an informal level, Hayek was addressing the same kinds of problems that Radner analyzed with far more powerful analytical tools than were available to Hayek. But the were both concerned with a common problem: under what conditions could an economy with an incomplete set of markets be said to be in a state of intertemporal equilibrium? In an economy lacking the full set of forward and state contingent markets describing the ADM model, intertemporal equilibrium cannot predetermined before trading even begins, but must, if such an equilibrium obtains, unfold through the passage of time. Outcomes might be expected, but they would not be predetermined in advance. Echoing Hayek, though to my knowledge he does not refer to Hayek in his work, Radner describes his intertemporal equilibrium under uncertainty as an equilibrium of plans, prices, and price expectations. Even if it exists, the Radner equilibrium is not the same as the ADM equilibrium, because without a full set of markets, agents can’t fully hedge against, or insure, all the risks to which they are exposed. The distinction between ex ante and ex post is not eliminated in the Radner equilibrium, though it is eliminated in the ADM equilibrium.

Additionally, because all trades in the ADM model have been executed before “time” begins, it seems impossible to rationalize holding any asset whose only use is to serve as a medium of exchange. In his early writings on business cycles, e.g., Monetary Theory and the Trade Cycle, Hayek questioned whether it would be possible to rationalize the holding of money in the context of a model of full equilibrium, suggesting that monetary exchange, by severing the link between aggregate supply and aggregate demand characteristic of a barter economy as described by Say’s Law, was the source of systematic deviations from the intertemporal equilibrium corresponding to the solution of a system of Walrasian equations. Hayek suggested that progress in analyzing economic fluctuations would be possible only if the Walrasian equilibrium method could be somehow be extended to accommodate the existence of money, uncertainty, and other characteristics of the real world while maintaining the analytical discipline imposed by the equilibrium method and the optimization principle. It proved to be a task requiring resources that were beyond those at Hayek’s, or probably anyone else’s, disposal at the time. But it would be wrong to fault Hayek for having had to insight to perceive and frame a problem that was beyond his capacity to solve. What he may be criticized for is mistakenly believing that he he had in fact grasped the general outlines of a solution when in fact he had only perceived some aspects of the solution and offering seriously inappropriate policy recommendations based on that seriously incomplete understanding.

In Value and Capital, Hicks also expressed doubts whether it would be possible to analyze the economic fluctuations characterizing the business cycle using a model of pure intertemporal equilibrium. He proposed an alternative approach for analyzing fluctuations which he called the method of temporary equilibrium. The essence of the temporary-equilibrium method is to analyze the behavior of an economy under the assumption that all markets for current delivery clear (in some not entirely clear sense of the term “clear”) while understanding that demand and supply in current markets depend not only on current prices but also upon expected future prices, and that the failure of current prices to equal what they had been expected to be is a potential cause for the plans that economic agents are trying to execute to be modified and possibly abandoned. In the Pure Theory of Capital, Hayek discussed Hicks’s temporary-equilibrium method a possible method of achieving the modification in the Walrasian method that he himself had proposed in Monetary Theory and the Trade Cycle. But after a brief critical discussion of the method, he dismissed it for reasons that remain obscure. Hayek’s rejection of the temporary-equilibrium method seems in retrospect to have been one of Hayek’s worst theoretical — or perhaps, meta-theoretical — blunders.

Decades later, C. J. Bliss developed the concept of temporary equilibrium to show that temporary equilibrium method can rationalize both holding an asset purely for its services as a medium of exchange and the existence of financial intermediaries (private banks) that supply financial assets held exclusively to serve as a medium of exchange. In such a temporary-equilibrium model with financial intermediaries, it seems possible to model not only the existence of private suppliers of a medium of exchange, but also the conditions – in a very general sense — under which the system of financial intermediaries breaks down. The key variable of course is vectors of expected prices subject to which the plans of individual households, business firms, and financial intermediaries are optimized. The critical point that emerges from Bliss’s analysis is that there are sets of expected prices, which if held by agents, are inconsistent with the existence of even a temporary equilibrium. Thus price flexibility in current market cannot, in principle, result in even a temporary equilibrium, because there is no price vector of current price in markets for present delivery that solves the temporary-equilibrium system. Even perfect price flexibility doesn’t lead to equilibrium if the equilibrium does not exist. And the equilibrium cannot exist if price expectations are in some sense “too far out of whack.”

Expected prices are thus, necessarily, equilibrating variables. But there is no economic mechanism that tends to cause the adjustment of expected prices so that they are consistent with the existence of even a temporary equilibrium, much less a full equilibrium.

Unfortunately, modern macroeconomics continues to neglect the temporary-equilibrium method; instead macroeconomists have for the most part insisted on the adoption of the rational-expectations hypothesis, a hypothesis that elevates question-begging to the status of a fundamental axiom of rationality. The crucial error in the rational-expectations hypothesis was to misunderstand the role of the comparative-statics method developed by Samuelson in The Foundations of Economic Analysis. The role of the comparative-statics method is to isolate the pure theoretical effect of a parameter change under a ceteris-paribus assumption. Such an effect could be derived only by comparing two equilibria under the assumption of a locally unique and stable equilibrium before and after the parameter change. But the method of comparative statics is completely inappropriate to most macroeconomic problems which are precisely concerned with the failure of the economy to achieve, or even to approximate, the unique and stable equilibrium state posited by the comparative-statics method.

Moreover, the original empirical application of the rational-expectations hypothesis by Muth was in the context of the behavior of a single market in which the market was dominated by well-informed specialists who could be presumed to have well-founded expectations of future prices conditional on a relatively stable economic environment. Under conditions of macroeconomic instability, there is good reason to doubt that the accumulated knowledge and experience of market participants would enable agents to form accurate expectations of the future course of prices even in those markets about which they expert knowledge. Insofar as the rational expectations hypothesis has any claim to empirical relevance it is only in the context of stable market situations that can be assumed to be already operating in the neighborhood of an equilibrium. For the kinds of problems that macroeconomists are really trying to answer that assumption is neither relevant nor appropriate.

Rules vs. Discretion Historically Contemplated

Here is a new concluding section which I have just written for my paper “Rules versus Discretion in Monetary Policy: Historically Contemplated” which I spoke about last September at the Mercatus Confernce on Monetary Rules in a Post-Crisis World. I have been working a lot on the paper over the past month or so and I hope to post a draft soon on SSRN and it is now under review for publication. I apologize for having written very little in past month and for having failed to respond to any comments on my previous posts. I simply have been too busy with work and life to have any energy left for blogging. I look forward to being more involved in the blog over the next few months and expect to be posting some sections of a couple of papers I am going to be writing. But I’m offering no guarantees. It is gratifying to know that people are still visiting the blog and reading some of my old posts.

Although recognition of a need for some rule to govern the conduct of the monetary authority originated in the perceived incentive of the authority to opportunistically abuse its privileged position, the expectations of the public (including that small, but modestly influential, segment consisting of amateur and professional economists) about what monetary rules might actually accomplish have evolved and expanded over the course of the past two centuries. As Laidler (“Economic Ideas, the Monetary Order, and the Uneasy Case for Monetary Rules”) shows, that evolution has been driven by both the evolution of economic and monetary institutions and the evolution of economic and monetary doctrines about how those institutions work.

I distinguish between two types of rules: price rules and quantity rules. The simplest price rule involved setting the price of a commodity – usually gold or silver – in terms of a monetary unit whose supply was controlled by the monetary authority or defining a monetary unit as a specific quantity of a particular commodity. Under the classical gold standard, for example, the monetary authority stood ready to buy or sell gold on demand at legally determined price of gold in terms of the monetary unit. Thus, the fixed price of gold under the gold standard was originally thought to serve as both the policy target of the rule and the operational instrument for implementing the rule.

However, as monetary institutions and theories evolved, it became apparent that there were policy objectives other than simply maintaining the convertibility of the monetary unit into the standard commodity that required the attention of the monetary authority. The first attempt to impose an additional policy goal on a monetary authority was the Bank Charter Act of 1844 which specified a quantity target – the aggregate of banknotes in circulation in Britain – which the monetary authority — the Bank of England – was required to reach by following a simple mechanical rule. By imposing a 100-percent marginal gold-reserve requirement on the notes issued by the Bank of England, the Bank Charter Act made the quantity of banknotes issued by the Bank of England both the target of the quantity rule and the instrument by which the rule was implemented.

Owing to deficiencies in the monetary theory on the basis of which the Act was designed and to the evolution of British monetary practices and institution, the conceptual elegance of the Bank Charter Act was not matched by its efficacy in practice. But despite, or, more likely, because of, the ultimate failure of Bank Charter Act, the gold standard, surviving recurring financial crises in Great Britain in the middle third of the nineteenth century, was eventually adopted by many other countries in the 1870s, becoming the de facto international monetary system from the late 1870s until the start of World War I. Operation of the gold standard was defined by, and depended on, the observance of a single price rule in which the value of a currency was defined by its legal gold content, so that corresponding to each gold-standard currency, there was an official gold price at which the monetary authority was obligated to buy or sell gold on demand.

The value – the purchasing power — of gold was relatively stable in the 35 or so years of the gold standard era, but that stability could not survive the upheavals associated with World War I, and so the problem of reconstructing the postwar monetary system was what kind of monetary rule to adopt to govern the post-war economy. Was it enough merely to restore the old currency parities – perhaps adjusted for differences in the extent of wartime and postwar currency depreciation — that governed the classical gold standard, or was it necessary to take into account other factors, e.g., the purchasing power of gold, in restoring the gold standard? This basic conundrum was never satisfactorily answered, and the failure to do so undoubtedly was a contributing, and perhaps dominant, factor in the economic collapse that began at the end of 1929, ultimately leading to the abandonment of the gold standard.

Searching for a new monetary regime to replace the failed gold standard, but to some extent inspired by the Bank Charter Act of the previous century, Henry Simons and ten fellow University of Chicago economists devised a totally new monetary system based on 100-percent reserve banking. The original Chicago proposal for 100-percent reserve banking proposed a monetary rule for stabilizing the purchasing power of fiat money. The 100-percent banking proposal would give the monetary authority complete control over the quantity of money, thereby enhancing the power of the monetary authority to achieve its price-level target. The Chicago proposal was thus inspired by a desire to increase the likelihood that the monetary authority could successfully implement the desired price rule. The price level was the target, and the quantity of money was the instrument. But as long as private fractional-reserve banks remained in operation, the monetary authority would lack effective control over the instrument. That was the rationale for replacing fractional reserve banks with 100-percent reserve banks.

But Simons eventually decided in his paper (“Rules versus Authorities in Monetary Policy”) that a price-level target was undesirable in principle, because allowing the monetary authority to choose which price level to stabilize, thereby favoring some groups at the expense of others, would grant too much discretion to the monetary authority. Rejecting price-level stabilization as monetary rule, Simons concluded that the exercise of discretion could be avoided only if the quantity of money was the target as well as the instrument of a monetary rule. Simons’s ideal monetary rule was therefore to keep the quantity of money in the economy constant — forever. But having found the ideal rule, Simons immediately rejected it, because he realized that the reforms in the financial and monetary systems necessary to make such a rule viable over the long run would never be adopted. And so he reluctantly and unhappily reverted back to the price-level stabilization rule that he and his Chicago colleagues had proposed in 1933.

Simons’s student Milton Friedman continued to espouse his teacher’s opposition to discretion, and as late as 1959 (A Program for Monetary Stability) he continued to advocate 100-percent reserve banking. But in the early 1960s, he adopted his k-percent rule and gave up his support for 100-percent banking. But despite giving up on 100-percent banking, Friedman continued to argue that the k-percent rule was less discretionary than the gold standard or a price-level rule, because neither the gold standard nor a price-level rule eliminated the exercise of discretion by the monetary authority in its implementation of policy, failing to acknowledge that, under any of the definitions that he used (usually M1 and sometimes M2), the quantity of money was a target, not an instrument. Of course, Friedman did eventually abandon his k-percent rule, but that acknowledgment came at least a decade after almost everyone else had recognized its unsuitability as a guide for conducting monetary policy, let alone as a legally binding rule, and long after Friedman’s repeated predictions that rapid growth of the monetary aggregates in the 1980s presaged the return of near-double-digit inflation.

However, the work of Kydland and Prescott (“Rules Rather than Discretion: The Inconsistency of Optimal Plans”) on time inconsistency has provided an alternative basis on which argue against discretion: that the lack of commitment to a long-run policy would lead to self-defeating short-term attempts to deviate from the optimal long-term policy.[1]

It is now I think generally understood that a monetary authority has available to it four primary instruments in conducting monetary policy, the quantity of base money, the lending rate it charges to banks, the deposit rate it pays banks on reserves, and an exchange rate against some other currency or some asset. A variety of goals remain available as well, nominal goals like inflation, the price level, or nominal income, or even an index of stock prices, as well as real goals like real GDP and employment.

Ever since Friedman and Phelps independently argued that the long-run Phillips Curve is vertical, a consensus has developed that countercyclical monetary policy is basically ineffectual, because the effects of countercyclical policy will be anticipated so that the only long-run effect of countercyclical policy is to raise the average rate of inflation without affecting output and employment in the long run. Because the reasoning that generates this result is essentially that money is neutral in the long run, the reasoning is not as compelling as the professional consensus in its favor would suggest. The monetary neutrality result only applies under the very special assumptions of a comparative static exercise comparing an initial equilibrium with a final equilibrium. But the whole point of countercyclical policy is to speed the adjustment from a disequilbrium with high unemployment back to a low-unemployment equilibrium. A comparative-statics exercise provides no theoretical, much less empirical, support for the proposition that anticipated monetary policy cannot have real effects.

So the range of possible targets and the range of possible instruments now provide considerable latitude to supporters of monetary rules to recommend alternative monetary rules incorporating many different combinations of alternative instruments and alternative targets. As of now, we have arrived at few solid theoretical conclusions about the relative effectiveness of alternative rules and even less empirical evidence about their effectiveness. But at least we know that, to be viable, a monetary rule will almost certainly have to be expressed in terms of one or more targets while allowing the monetary authority at least some discretion to adjust its control over its chosen instruments in order to effectively achieve its target (McCallum 1987, 1988). That does not seem like a great deal of progress to have made in the two centuries since economists began puzzling over how to construct an appropriate rule to govern the behavior of the monetary authority, but it is progress nonetheless. And, if we are so inclined, we can at least take some comfort in knowing that earlier generations have left us a lot of room for improvement.

Footnote:

[1] Friedman in fact recognized the point in his writings, but he emphasized the dangers of allowing discretion in the choice of instruments rather than the time-inconsistency policy, because it was only former argument that provided a basis for preferring his quantity rule over price rules.

There Is No Intertemporal Budget Constraint

Last week Nick Rowe posted a link to a just published article in a special issue of the Review of Keynesian Economics commemorating the 80th anniversary of the General Theory. Nick’s article discusses the confusion in the General Theory between saving and hoarding, and Nick invited readers to weigh in with comments about his article. The ROKE issue also features an article by Simon Wren-Lewis explaining the eclipse of Keynesian theory as a result of the New Classical Counter-Revolution, correctly identified by Wren-Lewis as a revolution inspired not by empirical success but by a methodological obsession with reductive micro-foundationalism. While deploring the New Classical methodological authoritarianism, Wren-Lewis takes solace from the ability of New Keynesians to survive under the New Classical methodological regime, salvaging a role for activist counter-cyclical policy by, in effect, negotiating a safe haven for the sticky-price assumption despite its shaky methodological credentials. The methodological fiction that sticky prices qualify as micro-founded allowed New Keynesianism to survive despite the ascendancy of micro-foundationalist methodology, thereby enabling the core Keynesian policy message to survive.

I mention the Wren-Lewis article in this context because of an exchange between two of the commenters on Nick’s article: the presumably pseudonymous Avon Barksdale and blogger Jason Smith about microfoundations and Keynesian economics. Avon began by chastising Nick for wasting time discussing Keynes’s 80-year old ideas, something Avon thinks would never happen in a discussion about a true science like physics, the 100-year-old ideas of Einstein being of no interest except insofar as they have been incorporated into the theoretical corpus of modern physics. Of course, this is simply vulgar scientism, as if the only legitimate way to do economics is to mimic how physicists do physics. This methodological scolding is typically charming New Classical arrogance. Sort of reminds one of how Friedrich Engels described Marxian theory as scientific socialism. I mean who, other than a religious fanatic, would be stupid enough to argue with the assertions of science?

Avon continues with a quotation from David Levine, a fine economist who has done a lot of good work, but who is also enthralled by the New Classical methodology. Avon’s scientism provoked the following comment from Jason Smith, a Ph. D. in physics with a deep interest in and understanding of economics.

You quote from Levine: “Keynesianism as argued by people such as Paul Krugman and Brad DeLong is a theory without people either rational or irrational”

This is false. The L in ISLM means liquidity preference and e.g. here …

http://krugman.blogs.nytimes.com/2013/11/18/the-new-keynesian-case-for-fiscal-policy-wonkish/

… Krugman mentions an Euler equation. The Euler equation essentially says that an agent must be indifferent between consuming one more unit today on the one hand and saving that unit and consuming in the future on the other if utility is maximized.

So there are agents in both formulations preferring one state of the world relative to others.

Avon replied:

Jason,

“This is false. The L in ISLM means liquidity preference and e.g. here”

I know what ISLM is. It’s not recursive so it really doesn’t have people in it. The dynamics are not set by any micro-foundation. If you’d like to see models with people in them, try Ljungqvist and Sargent, Recursive Macroeconomic Theory.

To which Jason retorted:

Avon,

So the definition of “people” is restricted to agents making multi-period optimizations over time, solving a dynamic programming problem?

Well then any such theory is obviously wrong because people don’t behave that way. For example, humans don’t optimize the dictator game. How can you add up optimizing agents and get a result that is true for non-optimizing agents … coincident with the details of the optimizing agents mattering.

Your microfoundation requirement is like saying the ideal gas law doesn’t have any atoms in it. And it doesn’t! It is an aggregate property of individual “agents” that don’t have properties like temperature or pressure (or even volume in a meaningful sense). Atoms optimize entropy, but not out of any preferences.

So how do you know for a fact that macro properties like inflation or interest rates are directly related to agent optimizations? Maybe inflation is like temperature — it doesn’t exist for individuals and is only a property of economics in aggregate.

These questions are not answered definitively, and they’d have to be to enforce a requirement for microfoundations … or a particular way of solving the problem.

Are quarks important to nuclear physics? Not really — it’s all pions and nucleons. Emergent degrees of freedom. Sure, you can calculate pion scattering from QCD lattice calculations (quark and gluon DoF), but it doesn’t give an empirically better result than chiral perturbation theory (pion DoF) that ignores the microfoundations (QCD).

Assuming quarks are required to solve nuclear physics problems would have been a giant step backwards.

To which Avon rejoined:

Jason

The microfoundation of nuclear physics and quarks is quantum mechanics and quantum field theory. How the degrees of freedom reorganize under the renormalization group flow, what effective field theory results is an empirical question. Keynesian economics is worse tha[n] useless. It’s wrong empirically, it has no theoretical foundation, it has no laws. It has no microfoundation. No serious grad school has taught Keynesian economics in nearly 40 years.

To which Jason answered:

Avon,

RG flow is irrelevant to chiral perturbation theory which is based on the approximate chiral symmetry of QCD. And chiral perturbation theory could exist without QCD as the “microfoundation”.

Quantum field theory is not a ‘microfoundation’, but rather a framework for building theories that may or may not have microfoundations. As Weinberg (1979) said:

” … quantum field theory itself has no content beyond analyticity, unitarity,
cluster decomposition, and symmetry.”

If I put together an NJL model, there is no requirement that the scalar field condensate be composed of quark-antiquark pairs. In fact, the basic idea was used for Cooper pairs as a model of superconductivity. Same macro theory; different microfoundations. And that is a general problem with microfoundations — different microfoundations can lead to the same macro theory, so which one is right?

And the IS-LM model is actually pretty empirically accurate (for economics):

http://informationtransfereconomics.blogspot.com/2014/03/the-islm-model-again.html

To which Avon responded:

First, ISLM analysis does not hold empirically. It just doesn’t work. That’s why we ended up with the macro revolution of the 70s and 80s. Keynesian economics ignores intertemporal budget constraints, it violates Ricardian equivalence. It’s just not the way the world works. People might not solve dynamic programs to set their consumption path, but at least these models include a future which people plan over. These models work far better than Keynesian ISLM reasoning.

As for chiral perturbation theory and the approximate chiral symmetries of QCD, I am not making the case that NJL models requires QCD. NJL is an effective field theory so it comes from something else. That something else happens to be QCD. It could have been something else, that’s an empirical question. The microfoundation I’m talking about with theories like NJL is QFT and the symmetries of the vacuum, not the short distance physics that might be responsible for it. The microfoundation here is about the basic laws, the principles.

ISLM and Keynesian economics has none of this. There is no principle. The microfoundation of modern macro is not about increasing the degrees of freedom to model every person in the economy on some short distance scale, it is about building the basic principles from consistent economic laws that we find in microeconomics.

Well, I totally agree that IS-LM is a flawed macroeconomic model, and, in its original form, it was borderline-incoherent, being a single-period model with an interest rate, a concept without meaning except as an intertemporal price relationship. These deficiencies of IS-LM became obvious in the 1970s, so the model was extended to include a future period, with an expected future price level, making it possible to speak meaningfully about real and nominal interest rates, inflation and an equilibrium rate of spending. So the failure of IS-LM to explain stagflation, cited by Avon as the justification for rejecting IS-LM in favor of New Classical macro, was not that hard to fix, at least enough to make it serviceable. And comparisons of the empirical success of augmented IS-LM and the New Classical models have shown that IS-LM models consistently outperform New Classical models.

What Avon fails to see is that the microfoundations that he considers essential for macroeconomics are themselves derived from the assumption that the economy is operating in macroeconomic equilibrium. Thus, insisting on microfoundations – at least in the formalist sense that Avon and New Classical macroeconomists understand the term – does not provide a foundation for macroeconomics; it is just question begging aka circular reasoning or petitio principia.

The circularity is obvious from even a cursory reading of Samuelson’s Foundations of Economic Analysis, Robert Lucas’s model for doing economics. What Samuelson called meaningful theorems – thereby betraying his misguided acceptance of the now discredited logical positivist dogma that only potentially empirically verifiable statements have meaning – are derived using the comparative-statics method, which involves finding the sign of the derivative of an endogenous economic variable with respect to a change in some parameter. But the comparative-statics method is premised on the assumption that before and after the parameter change the system is in full equilibrium or at an optimum, and that the equilibrium, if not unique, is at least locally stable and the parameter change is sufficiently small not to displace the system so far that it does not revert back to a new equilibrium close to the original one. So the microeconomic laws invoked by Avon are valid only in the neighborhood of a stable equilibrium, and the macroeconomics that Avon’s New Classical mentors have imposed on the economics profession is a macroeconomics that, by methodological fiat, is operative only in the neighborhood of a locally stable equilibrium.

Avon dismisses Keynesian economics because it ignores intertemporal budget constraints. But the intertemporal budget constraint doesn’t exist in any objective sense. Certainly macroeconomics has to take into account intertemporal choice, but the idea of an intertemporal budget constraint analogous to the microeconomic budget constraint underlying the basic theory of consumer choice is totally misguided. In the static theory of consumer choice, the consumer has a given resource endowment and known prices at which consumers can transact at will, so the utility-maximizing vector of purchases and sales can be determined as the solution of a constrained-maximization problem.

In the intertemporal context, consumers have a given resource endowment, but prices are not known. So consumers have to make current transactions based on their expectations about future prices and a variety of other circumstances about which consumers can only guess. Their budget constraints are thus not real but totally conjectural based on their expectations of future prices. The optimizing Euler equations are therefore entirely conjectural as well, and subject to continual revision in response to changing expectations. The idea that the microeconomic theory of consumer choice is straightforwardly applicable to the intertemporal choice problem in a setting in which consumers don’t know what future prices will be and agents’ expectations of future prices are a) likely to be very different from each other and thus b) likely to be different from their ultimate realizations is a huge stretch. The intertemporal budget constraint has a completely different role in macroeconomics from the role it has in microeconomics.

If I expect that the demand for my services will be such that my disposable income next year would be $500k, my consumption choices would be very different from what they would have been if I were expecting a disposable income of $100k next year. If I expect a disposable income of $500k next year, and it turns out that next year’s income is only $100k, I may find myself in considerable difficulty, because my planned expenditure and the future payments I have obligated myself to make may exceed my disposable income or my capacity to borrow. So if there are a lot of people who overestimate their future incomes, the repercussions of their over-optimism may reverberate throughout the economy, leading to bankruptcies and unemployment and other bad stuff.

A large enough initial shock of mistaken expectations can become self-amplifying, at least for a time, possibly resembling the way a large initial displacement of water can generate a tsunami. A financial crisis, which is hard to model as an equilibrium phenomenon, may rather be an emergent phenomenon with microeconomic sources, but whose propagation can’t be described in microeconomic terms. New Classical macroeconomics simply excludes such possibilities on methodological grounds by imposing a rational-expectations general-equilibrium structure on all macroeconomic models.

This is not to say that the rational expectations assumption does not have a useful analytical role in macroeconomics. But the most interesting and most important problems in macroeconomics arise when the rational expectations assumption does not hold, because it is when individual expectations are very different and very unstable – say, like now, for instance — that macroeconomies become vulnerable to really scary instability.

Simon Wren-Lewis makes a similar point in his paper in the Review of Keynesian Economics.

Much discussion of current divisions within macroeconomics focuses on the ‘saltwater/freshwater’ divide. This understates the importance of the New Classical Counter Revolution (hereafter NCCR). It may be more helpful to think about the NCCR as involving two strands. The one most commonly talked about involves Keynesian monetary and fiscal policy. That is of course very important, and plays a role in the policy reaction to the recent Great Recession. However I want to suggest that in some ways the second strand, which was methodological, is more important. The NCCR helped completely change the way academic macroeconomics is done.

Before the NCCR, macroeconomics was an intensely empirical discipline: something made possible by the developments in statistics and econometrics inspired by The General Theory. After the NCCR and its emphasis on microfoundations, it became much more deductive. As Hoover (2001, p. 72) writes, ‘[t]he conviction that macroeconomics must possess microfoundations has changed the face of the discipline in the last quarter century’. In terms of this second strand, the NCCR was triumphant and remains largely unchallenged within mainstream academic macroeconomics.

Perhaps I will have some more to say about Wren-Lewis’s article in a future post. And perhaps also about Nick Rowe’s article.

HT: Tom Brown

Update (02/11/16):

On his blog Jason Smith provides some further commentary on his exchange with Avon on Nick Rowe’s blog, explaining at greater length how irrelevant microfoundations are to doing real empirically relevant physics. He also expands on and puts into a broader meta-theoretical context my point about the extremely narrow range of applicability of the rational-expectations equilibrium assumptions of New Classical macroeconomics.

David Glasner found a back-and-forth between me and a commenter (with the pseudonym “Avon Barksdale” after [a] character on The Wire who [didn’t end] up taking an economics class [per Tom below]) on Nick Rowe’s blog who expressed the (widely held) view that the only scientific way to proceed in economics is with rigorous microfoundations. “Avon” held physics up as a purported shining example of this approach.
I couldn’t let it go: even physics isn’t that reductionist. I gave several examples of cases where the microfoundations were actually known, but not used to figure things out: thermodynamics, nuclear physics. Even modern physics is supposedly built on string theory. However physicists do not require every pion scattering amplitude be calculated from QCD. Some people do do so-called lattice calculations. But many resort to the “effective” chiral perturbation theory. In a sense, that was what my thesis was about — an effective theory that bridges the gap between lattice QCD and chiral perturbation theory. That effective theory even gave up on one of the basic principles of QCD — confinement. It would be like an economist giving up opportunity cost (a basic principle of the micro theory). But no physicist ever said to me “your model is flawed because it doesn’t have true microfoundations”. That’s because the kind of hard core reductionism that surrounds the microfoundations paradigm doesn’t exist in physics — the most hard core reductionist natural science!
In his post, Glasner repeated something that he had before and — probably because it was in the context of a bunch of quotes about physics — I thought of another analogy.

Glasner says:

But the comparative-statics method is premised on the assumption that before and after the parameter change the system is in full equilibrium or at an optimum, and that the equilibrium, if not unique, is at least locally stable and the parameter change is sufficiently small not to displace the system so far that it does not revert back to a new equilibrium close to the original one. So the microeconomic laws invoked by Avon are valid only in the neighborhood of a stable equilibrium, and the macroeconomics that Avon’s New Classical mentors have imposed on the economics profession is a macroeconomics that, by methodological fiat, is operative only in the neighborhood of a locally stable equilibrium.

 

This hits on a basic principle of physics: any theory radically simplifies near an equilibrium.

Go to Jason’s blog to read the rest of his important and insightful post.

The Near Irrelevance of the Vertical Long-Run Phillips Curve

From a discussion about how much credit Milton Friedman deserves for changing the way that economists thought about inflation, I want to nudge the conversation in a slightly different direction, to restate a point that I made some time ago in one of my favorite posts (The Lucas Critique Revisited). But if Friedman taught us anything it is that incessant repetition of the same already obvious point can do wonders for your reputation. That’s one lesson from Milton that I am willing to take to heart, though my tolerance for hearing myself say the same darn thing over and over again is probably not as great as Friedman’s was, which to be sure is not the only way in which I fall short of him by comparison. (I am almost a foot taller than he was by the way). Speaking of being a foot taller than Friedman, I don’t usually post pictures on this blog, but here is one that I have always found rather touching. And if you don’t know who the other guy is in the picture, you have no right to call yourself an economist.

friedman_&_StiglerAt any rate, the expectations augmented, long-run Phillips Curve, as we all know, was shown by Friedman to be vertical. But what exactly does it mean for the expectations-augmented, long-run Phillips Curve to be vertical? Discussions about whether the evidence supports the proposition that the expectations-augmented, long-run Phillips Curve is vertical (including some of the comments on my recent posts) suggest that people are not clear on what “long-run” means in the context of the expectations-augmented Phillips Curve and have not really thought carefully about what empirical content is contained by the proposition that the expectations-augmented, long-run Phillips Curve is vertical.

Just to frame the discussion of the Phillips Curve, let’s talk about what the term “long-run” means in economics. What it certainly does not mean is an amount of calendar time, though I won’t deny that there are frequent attempts to correlate long-run with varying durations of calendar time. But all such attempts either completely misunderstand what the long-run actually represents, or they merely aim to provide the untutored with some illusion of concreteness in what is otherwise a completely abstract discussion. In fact, what “long run” connotes is simply a full transition from one equilibrium state to another in the context of a comparative-statics exercise.

If a change in some exogenous parameter is imposed on a pre-existing equilibrium, then the long-run represents the full transition to a new equilibrium in which all endogenous variables have fully adjusted to the parameter change. The short-run, then, refers to some intermediate adjustment to the parameter change in which some endogenous variables have been arbitrarily held fixed (presumably because of some possibly reasonable assumption that some variables are able to adjust more speedily than other variables to the posited parameter change).

Now the Phillips Curve that was discovered by A. W. Phillips in his original paper was a strictly empirical relation between observed (wage) inflation and observed unemployment. But the expectations-augmented long-run Phillips Curve is a theoretical construct. And what it represents is certainly not an observable relationship between inflation and unemployment; it rather is a locus of points of equilibrium, each point representing full adjustment of the labor market to a particular rate of inflation, where full adjustment means that the rate of inflation is fully anticipated by all economic agents in the model. So what the expectations-augmented, long-run Phillips Curve is telling us is that if we perform a series of comparative-statics exercises in which, starting from full equilibrium with the given rate of inflation fully expected, we impose on the system a parameter change in which the exogenously imposed rate of inflation is changed and deduce a new equilibrium in which the fully and universally expected rate of inflation equals the alternative exogenously imposed inflation parameter, the equilibrium rate of unemployment corresponding to the new inflation parameter will not differ from the equilibrium rate of unemployment corresponding to the original inflation parameter.

Notice, as well, that the expectations-augmented, long-run Phillips Curve is not saying that imposing a new rate of inflation on an actual economic system would lead to a new equilibrium in which there was no change in unemployment; it is merely comparing alternative equilibria of the same system with different exogenously imposed rates of inflation. To make a statement about the effect of a change in the rate of inflation on unemployment, one has to be able to specify an adjustment path in moving from one equilibrium to another. The comparative-statics method says nothing about the adjustment path; it simply compares two alternative equilibrium states and specifies the change in endogenous variable induced by the change in an exogenous parameter.

So the vertical shape of the expectations-augmented, long-run Phillips Curve tells us very little about how, in any given situation, a change in the rate of inflation would actually affect the rate of unemployment. Not only does the expectations-augmented long-run Phillips Curve fail to tell us how a real system starting from equilibrium would be affected by a change in the rate of inflation, the underlying comparative-statics exercise being unable to specify the adjustment path taken by a system once it departs from its original equilibrium state, the expectations augmented, long-run Phillips Curve is even less equipped to tell us about the adjustment to a change in the rate of inflation when a system is not even in equilibrium to begin with.

The entire discourse of the expectations-augmented, long-run Phillips Curve is completely divorced from the kinds of questions that policy makers in the real world usually have to struggle with – questions like will increasing the rate of inflation of an economy in which there is abnormally high unemployment facilitate or obstruct the adjustment process that takes the economy back to a more normal unemployment rate. The expectations-augmented, long-run Phillips Curve may not be completely irrelevant to the making of economic policy – it is good to know, for example, that if we are trying to figure out which time path of NGDP to aim for, there is no particular reason to think that a time path with a 10% rate of growth of NGDP would probably not generate a significantly lower rate of unemployment than a time path with a 5% rate of growth – but its relationship to reality is sufficiently tenuous that it is irrelevant to any discussion of policy alternatives for economies unless those economies are already close to being in equilibrium.


About Me

David Glasner
Washington, DC

I am an economist in the Washington DC area. My research and writing has been mostly on monetary economics and policy and the history of economics. In my book Free Banking and Monetary Reform, I argued for a non-Monetarist non-Keynesian approach to monetary policy, based on a theory of a competitive supply of money. Over the years, I have become increasingly impressed by the similarities between my approach and that of R. G. Hawtrey and hope to bring Hawtrey’s unduly neglected contributions to the attention of a wider audience.

My new book Studies in the History of Monetary Theory: Controversies and Clarifications has been published by Palgrave Macmillan

Follow me on Twitter @david_glasner

Archives

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 3,272 other subscribers
Follow Uneasy Money on WordPress.com