Archive for the 'general equilibrium' Category

Hayek and Temporary Equilibrium

In my three previous posts (here, here, and here) about intertemporal equilibrium, I have been emphasizing that the defining characteristic of an intertemporal equilibrium is that agents all share the same expectations of future prices – or at least the same expectations of those future prices on which they are basing their optimizing plans – over their planning horizons. At a given moment at which agents share the same expectations of future prices, the optimizing plans of the agents are consistent, because none of the agents would have any reason to change his optimal plan as long as price expectations do not change, or are not disappointed as a result of prices turning out to be different from what they had been expected to be.

The failure of expected prices to be fulfilled would therefore signify that the information available to agents in forming their expectations and choosing optimal plans conditional on their expectations had been superseded by newly obtained information. The arrival of new information can thus be viewed as a cause of disequilibrium as can any difference in information among agents. The relationship between information and equilibrium can be expressed as follows: differences in information or differences in how agents interpret information leads to disequilibrium, because those differences lead agents to form differing expectations of future prices.

Now the natural way to generalize the intertemporal equilibrium model is to allow for agents to have different expectations of future prices reflecting their differences in how they acquire, or in how they process, information. But if agents have different information, so that their expectations of future prices are not the same, the plans on which agents construct their subjectively optimal plans will be inconsistent and incapable of implementation without at least some revisions. But this generalization seems incompatible with the equilibrium of optimal plans, prices and price expectations described by Roy Radner, which I have identified as an updated version of Hayek’s concept of intertemporal equilibrium.

The question that I want to explore in this post is how to reconcile the absence of equilibrium of optimal plans, prices, and price expectations, with the intuitive notion of market clearing that we use to analyze asset markets and markets for current delivery. If markets for current delivery and for existing assets are in equilibrium in the sense that prices are adjusting in those markets to equate demand and supply in those markets, how can we understand the idea that  the optimizing plans that agents are seeking to implement are mutually inconsistent?

The classic attempt to explain this intermediate situation which partially is and partially is not an equilibrium, was made by J. R. Hicks in 1939 in Value and Capital when he coined the term “temporary equilibrium” to describe a situation in which current prices are adjusting to equilibrate supply and demand in current markets even though agents are basing their choices of optimal plans to implement over time on different expectations of what prices will be in the future. The divergence of the price expectations on the basis of which agents choose their optimal plans makes it inevitable that some or all of those expectations won’t be realized, and that some, or all, of those agents won’t be able to implement the optimal plans that they have chosen, without at least some revisions.

In Hayek’s early works on business-cycle theory, he argued that the correct approach to the analysis of business cycles must be analyzed as a deviation by the economy from its equilibrium path. The problem that he acknowledged with this approach was that the tools of equilibrium analysis could be used to analyze the nature of the equilibrium path of an economy, but could not easily be deployed to analyze how an economy performs once it deviates from its equilibrium path. Moreover, cyclical deviations from an equilibrium path tend not to be immediately self-correcting, but rather seem to be cumulative. Hayek attributed the tendency toward cumulative deviations from equilibrium to the lagged effects of monetary expansion which cause cumulative distortions in the capital structure of the economy that lead at first to an investment-driven expansion of output, income and employment and then later to cumulative contractions in output, income, and employment. But Hayek’s monetary analysis was never really integrated with the equilibrium analysis that he regarded as the essential foundation for a theory of business cycles, so the monetary analysis of the cycle remained largely distinct from, if not inconsistent with, the equilibrium analysis.

I would suggest that for Hayek the Hicksian temporary-equilibrium construct would have been the appropriate theoretical framework within which to formulate a monetary analysis consistent with equilibrium analysis. Although there are hints in the last part of The Pure Theory of Capital that Hayek was thinking along these lines, I don’t believe that he got very far, and he certainly gave no indication that he saw in the Hicksian method the analytical tool with which to weave the two threads of his analysis.

I will now try to explain how the temporary-equilibrium method makes it possible to understand  the conditions for a cumulative monetary disequilibrium. I make no attempt to outline a specifically Austrian or Hayekian theory of monetary disequilibrium, but perhaps others will find it worthwhile to do so.

As I mentioned in my previous post, agents understand that their price expectations may not be realized, and that their plans may have to be revised. Agents also recognize that, given the uncertainty underlying all expectations and plans, not all debt instruments (IOUs) are equally reliable. The general understanding that debt – promises to make future payments — must be evaluated and assessed makes it profitable for some agents to specialize in in debt assessment. Such specialists are known as financial intermediaries. And, as I also mentioned previously, the existence of financial intermediaries cannot be rationalized in the ADM model, because, all contracts being made in period zero, there can be no doubt that the equilibrium exchanges planned in period zero will be executed whenever and exactly as scheduled, so that everyone’s promise to pay in time zero is equally good and reliable.

For our purposes, a particular kind of financial intermediary — banks — are of primary interest. The role of a bank is to assess the quality of the IOUs offered by non-banks, and select from the IOUs offered to them those that are sufficiently reliable to be accepted by the bank. Once a prospective borrower’s IOU is accepted, the bank exchanges its own IOU for the non-bank’s IOU. No non-bank would accept a non-bank’s IOU, at least not on terms as favorable as those on which the bank offers in accepting an IOU. In return for the non-bank IOU, the bank credits the borrower with a corresponding amount of its own IOUs, which, because the bank promises to redeem its IOUs for the numeraire commodity on demand, is generally accepted at face value.

Thus, bank debt functions as a medium of exchange even as it enables non-bank agents to make current expenditures they could not have made otherwise if they can demonstrate to the bank that they are sufficiently likely to repay the loan in the future at agreed upon terms. Such borrowing and repayments are presumably similar to the borrowing and repayments that would occur in the ADM model unmediated by any financial intermediary. In assessing whether a prospective borrower will repay a loan, the bank makes two kinds of assessments. First, does the borrower have sufficient income-earning capacity to generate enough future income to make the promised repayments that the borrower would be committing himself to make? Second, should the borrower’s future income, for whatever reason, turn out to be insufficient to finance the promised repayments, does the borrower have collateral that would allow the bank to secure repayment from the collateral offered as security? In making both kinds of assessments the bank has to form an expectation about the future — the future income of the borrower and the future value of the collateral.

In a temporary-equilibrium context, the expectations of future prices held by agents are not the same, so the expectations of future prices of at least some agents will not be accurate, and some agents won’tbe able to execute their plans as intended. Agents that can’t execute their plans as intended are vulnerable if they have incurred future obligations based on their expectations of future prices that exceed their repayment capacity given the future prices that are actually realized. If they have sufficient wealth — i.e., if they have asset holdings of sufficient value — they may still be able to repay their obligations. However, in the process they may have to sell assets or reduce their own purchases, thereby reducing the income earned by other agents. Selling assets under pressure of obligations coming due is almost always associated with selling those assets at a significant loss, which is precisely why it usually preferable to finance current expenditure by borrowing funds and making repayments on a fixed schedule than to finance the expenditure by the sale of assets.

Now, in adjusting their plans when they observe that their price expectations are disappointed, agents may respond in two different ways. One type of adjustment is to increase sales or decrease purchases of particular goods and services that they had previously been planning to purchase or sell; such marginal adjustments do not fundamentally alter what agents are doing and are unlikely to seriously affect other agents. But it is also possible that disappointed expectations will cause some agents to conclude that their previous plans are no longer sustainable under the conditions in which they unexpectedly find themselves, so that they must scrap their old plans replacing them with completely new plans instead. In the latter case, the abandonment of plans that are no longer viable given disappointed expectations may cause other agents to conclude that the plans that they had expected to implement are no longer profitable and must be scrapped.

When agents whose price expectations have been disappointed respond with marginal adjustments in their existing plans rather than scrapping them and replacing them with new ones, a temporary equilibrium with disappointed expectations may still exist and that equilibrium may be reached through appropriate price adjustments in the markets for current delivery despite the divergent expectations of future prices held by agents. Operation of the price mechanism may still be able to achieve a reconciliation of revised but sub-optimal plans. The sub-optimal temporary equilibrium will be inferior to the allocation that would have resulted had agents all held correct expectations of future prices. Nevertheless, given a history of incorrect price expectations and misallocations of capital assets, labor, and other factors of production, a sub-optimal temporary equilibrium may be the best feasible outcome.

But here’s the problem. There is no guarantee that, when prices turn out to be very different from what they were expected to be, the excess demands of agents will adjust smoothly to changes in current prices. A plan that was optimal based on the expectation that the price of widgets would be $500 a unit may well be untenable at a price of $120 a unit. When realized prices are very different from what they had been expected to be, those price changes can lead to discontinuous adjustments, violating a basic assumption — the continuity of excess demand functions — necessary to prove the existence of an equilibrium. Once output prices reach some minimum threshold, the best response for some firms may be to shut down, the excess demand for the product produced by the firm becoming discontinuous at the that threshold price. The firms shutting down operations may be unable to repay loans they had obligated themselves to repay based on their disappointed price expectations. If ownership shares in firms forced to cease production are held by households that have predicated their consumption plans on prior borrowing and current repayment obligations, the ability of those households to fulfill their obligations may be compromised once those firms stop paying out the expected profit streams. Banks holding debts incurred by firms or households that borrowers cannot service may find that their own net worth is reduced sufficiently to make the banks’ own debt unreliable, potentially causing a breakdown in the payment system. Such effects are entirely consistent with a temporary-equilibrium model if actual prices turn out to be very different from what agents had expected and upon which they had constructed their future consumption and production plans.

Sufficiently large differences between expected and actual prices in a given period may result in discontinuities in excess demand functions once prices reach critical thresholds, thereby violating the standard continuity assumptions on which the existence of general equilibrium depends under the fixed-point theorems that are the lynchpin of modern existence proofs. C. J. Bliss made such an argument in a 1983 paper (“Consistent Temporary Equilibrium” in the volume Modern Macroeconomic Theory edited by  J. P. Fitoussi) in which he also suggested, as I did above, that the divergence of individual expectations implies that agents will not typically regard the debt issued by other agents as homogeneous. Bliss therefore posited the existence of a “Financier” who would subject the borrowing plans of prospective borrowers to an evaluation process to determine if the plan underlying the prospective loan sought by a borrower was likely to generate sufficient cash flow to enable the borrower to repay the loan. The role of the Financier is to ensure that the plans that firms choose are based on roughly similar expectations of future prices so that firms will not wind up acting on price expectations that must inevitably be disappointed.

I am unsure how to understand the function that Bliss’s Financier is supposed to perform. Presumably the Financier is meant as a kind of idealized companion to the Walrasian auctioneer rather than as a representation of an actual institution, but the resemblance between what the Financier is supposed to do and what bankers actually do is close enough to make it unclear to me why Bliss chose an obviously fictitious character to weed out business plans based on implausible price expectations rather than have the role filled by more realistic characters that do what their real-world counterparts are supposed to do. Perhaps Bliss’s implicit assumption is that real-world bankers do not constrain the expectations of prospective borrowers sufficiently to suggest that their evaluation of borrowers would increase the likelihood that a temporary equilibrium actually exists so that only an idealized central authority could impose sufficient consistency on the price expectations to make the existence of a temporary equilibrium likely.

But from the perspective of positive macroeconomic and business-cycle theory, explicitly introducing banks that simultaneously provide an economy with a medium of exchange – either based on convertibility into a real commodity or into a fiat base money issued by the monetary authority – while intermediating between ultimate borrowers and ultimate lenders seems to be a promising way of modeling a dynamic economy that sometimes may — and sometimes may not — function at or near a temporary equilibrium.

We observe economies operating in the real world that sometimes appear to be functioning, from a macroeconomic perspective, reasonably well with reasonably high employment, increasing per capita output and income, and reasonable price stability. At other times, these economies do not function well at all, with high unemployment and negative growth, sometimes with high rates of inflation or with deflation. Sometimes, these economies are beset with financial crises in which there is a general crisis of solvency, and even apparently solvent firms are unable to borrow. A macroeconomic model should be able to account in some way for the diversity of observed macroeconomic experience. The temporary equilibrium paradigm seems to offer a theoretical framework capable of accounting for this diversity of experience and for explaining at least in a very general way what accounts for the difference in outcomes: the degree of congruence between the price expectations of agents. When expectations are reasonably consistent, the economy is able to function at or near a temporary equilibrium which is likely to exist. When expectations are highly divergent, a temporary equilibrium may not exist, and even if it does, the economy may not be able to find its way toward the equilibrium. Price adjustments in current markets may be incapable of restoring equilibrium inasmuch as expectations of future prices must also adjust to equilibrate the economy, there being no market mechanism by which equilibrium price expectations can be adjusted or restored.

This, I think, is the insight underlying Axel Leijonhufvud’s idea of a corridor within which an economy tends to stay close to an equilibrium path. However if the economy drifts or is shocked away from its equilibrium time path, the stabilizing forces that tend to keep an economy within the corridor cease to operate at all or operate only weakly, so that the tendency for the economy to revert back to its equilibrium time path is either absent or disappointingly weak.

The temporary-equilibrium method, it seems to me, might have been a path that Hayek could have successfully taken in pursuing the goal he had set for himself early in his career: to reconcile equilibrium-analysis with a theory of business cycles. Why he ultimately chose not to take this path is a question that, for now at least, I will leave to others to try to answer.

Roy Radner and the Equilibrium of Plans, Prices and Price Expectations

In this post I want to discuss Roy Radner’s treatment of an equilibrium of plans, prices, and price expectations (EPPPE) and its relationship to Hayek’s conception of intertemporal equilibrium, of which Radner’s treatment is a technically more sophisticated version. Although I seen no evidence that Radner was directly influenced by Hayek’s work, I consider Radner’s conception of EPPPE to be a version of Hayek’s conception of intertemporal equilibrium, because it captures essential properties of Hayek’s conception of intertemporal equilibrium as a situation in which agents independently formulate their own optimizing plans based on the prices that they actually observe – their common knowledge – and on the future prices that they expect to observe over the course of their planning horizons. While currently observed prices are common knowledge – not necessarily a factual description of economic reality but not an entirely unreasonable simplifying assumption – the prices that individual agents expect to observe in the future are subjective knowledge based on whatever common or private knowledge individuals may have and whatever methods they may be using to form their expectations of the prices that will be observed in the future. An intertemporal equilibrium refers to a set of decentralized plans that are both a) optimal from the standpoint of every agent’s own objectives given their common knowledge of current prices and their subjective expectations of future prices and b) mutually consistent.

If an agent has chosen an optimal plan given current and expected future prices, that plan will not be changed unless the agent acquires new information that renders the existing plan sub-optimal relative to the new information. Otherwise, there would be no reason for the agent to deviate from an optimal plan. The new information that could cause an agent to change a formerly optimal plan would either affect the preferences of the agent, the technology available to the agent, or would somehow be reflected in current prices or in expected future prices. But it seems improbable that there could be a change in preferences or technology would not also be reflected in current or expected future prices. So absent a change in current or expected future prices, there would seem to be almost no likelihood that an agent would deviate from a plan that was optimal given current prices and the future prices expected by the agent.

The mutual consistency of the optimizing plans of independent agents therefore turns out to be equivalent to the condition that all agents observe the same current prices – their common knowledge – and have exactly the same forecasts of the future prices upon which they have relied in choosing their optimal plans. Even should their forecasts of future prices turn out to be wrong, at the moment before their forecasts of future prices were changed or disproved by observation, their plans were still mutually consistent relative to the information on which their plans had been chosen. The failure of the equilibrium to be maintained could be attributed to a change in information that meant that the formerly optimal plans were no longer optimal given the newly acquired information. But until the new information became available, the mutual consistency of optimal plans at that (fleeting) moment signified an equilibrium state. Thus, the defining characteristic of an intertemporal equilibrium in which current prices are common knowledge is that all agents share the same expectations of the future prices on which their optimal plans have been based.

There are fundamental differences between the Arrow-Debreu-McKenzie (ADM) equilibrium and the EPPPE. One difference worth mentioning is that, under the standard assumptions of the ADM model, the equilibrium is Pareto-optimal, and any Pareto-optimum allocation, by a suitable redistribution of initial endowments, could be achieved as a general equilibrium (two welfare theorems). These results do not generally hold for EPPPE, because, in contrast to the ADM model, it is possible for agents in EPPPE to acquire additional information over time, not only passively, but by investing resources in the production of information. Investing resources in the production of information can cause inefficiency in two ways: first, by creating non-convexities (owing to start-up costs in information gathering activities) that are inconsistent with the uniform competitive prices characteristic of the ADM equilibrium, and second, by creating incentives to devote resources to produce information whose value is derived from profits in trading with less well-informed agents. The latter source of inefficiency was discovered by Jack Hirshleifer in his classic 1971 paper, which I have written about in several previous posts (here, here, here, and here).

But the important feature of Radner’s EPPPE that I want to emphasize here — and what radically distinguishes it from the ADM equilibrium — is its fragility. Unlike the ADM equilibrium which is established once and forever at time zero of a model in which all production and consumption starts in period one, the EPPPE, even if it ever exists, is momentary, and is subject to unraveling whenever there is a change in the underlying information upon which current prices and expected future prices depend, and upon which agents, in choosing their optimal plans, rely. Time is not just, as it is in the ADM model, an appendage to the EPPPE, and, as a result, EPPPE can account for many phenomena, practices, and institutions that are left out of the ADM model.

The two differences that are most relevant in this context are the existence of stock markets in which shares of firms are traded based on expectations of the future net income streams associated with those firms, and the existence of a medium of exchange supplied by private financial intermediaries known as banks. In the ADM model in which all transactions are executed in time zero, in advance of all the actual consumption and production activities determined by those transactions, there would be no reason to hold, or to supply, a medium of exchange. The ADM equilibrium allows for agents to borrow or lend at equilibrium interest rates to optimize the time profiles of their consumption relative to their endowments and the time profiles of their earnings. Since all such transactions are consummated in time zero, and since, through some undefined process, the complete solvency and the integrity of all parties to all transactions is ascertained in time zero, the probability of a default on any loan contracted at time zero is zero. As a result, each agent faces a single intertemporal budget constraint at time zero over all periods from 1 to n. Walras’s Law therefore holds across all time periods for this intertemporal budget constraint, each agent transacting at the same prices in each period as every other agent does.

Once an equilibrium price vector is established in time zero, each agent knows that his optimal plan based on that price vector (which is the common knowledge of all agents) will be executed over time exactly as determined in time zero. There is no reason for any exchange of ownership shares in firms, the future income streams from each firm being known in advance.

The ADM equilibrium is a model of an economic process very different from Radner’s EPPPE, because in EPPPE, agents have no reason to assume that their current plans, even if they are momentarily both optimal and mutually consistent with the plans of all other agents, will remain optimal and consistent with the plans of all other agents. New information can arrive or be produced that will necessitate a revision in plans. Because even equilibrium plans are subject to revision, agents must take into account the solvency and credit worthiness of counterparties with whom they enter into transactions. The potentially imperfect credit-worthiness of at least some agents enables certain financial intermediaries (aka banks) to provide a service by offering to exchange their debt, which is widely considered to be more credit-worthy than the debt of ordinary agents, to agents seeking to borrow to finance purchases of either consumption or investment goods. Many agents seeking to borrow therefore prefer exchanging their debt for bank debt, bank debt being acceptable by other agents at face value. In addition, because the acquisition of new information is possible, there is a reason for agents to engage in speculative trades of commodities or assets. Such assets include ownership shares of firms, and agents may revise their valuations of those firms as they revise their expectations about future prices and their expectations about the revised plans of those firms in response to newly acquired information.

I will discuss the special role of banks at greater length in my next post on temporary equilibrium. But for now, I just want to underscore a key point: in the EPPE, unless all agents have the same expectations of future prices, Walras’s Law need not hold. The proof that Walras’s holds depends on the assumption that individual plans to buy and sell are based on the assumption that every agent buys or sells each commodity at the same price that every other transactor buys  or sells that commodity. But in the intertemporal context, in which only current, not future prices, are observed, plans for current and future prices are made based on expectations about future prices. If agents don’t share the same expectations about future prices, agents making plans for future purchases based on overly optimistic expectations about the prices at which they will be able to sell, may make commitments to buy in the future (or commitment to repay loans to finance purchases in the present) that they will be unable to discharge. Reneging on commitments to buy in the future or to repay obligations incurred in the present may rule out the existence of even a temporary equilibrium in the future.

Finally, let me add a word about Radner’s terminology. In his 1987 entry on “Uncertainty and General Equilibrium” for the New Palgrave Dictionary of Economics, (Here is a link to the revised version on line), Radner writes:

A trader’s expectations concern both future environmental events and future prices. Regarding expectations about future environmental events, there is no conceptual problem. According to the Expected Utility Hypothesis, each trader is characterized by a subjective probability measure on the set of complete histories of the environment. Since, by definition, the evolution of the environment is exogenous, a trader’s conditional probability of a future event, given the information to date, is well defined.

It is not so obvious how to proceed with regard to trader’s expectations about future prices. I shall contrast two possible approaches. In the first, which I shall call the perfect foresight approach, let us assume that the behaviour of traders is such as to determine, for each complete history of the environment, a unique corresponding sequence of price system[s]. . .

Thus, the perfect foresight approach implies that, in equilibrium, traders have common price expectation functions. These price expectation functions indicate, for each date-event pair, what the equilibrium price system would be in the corresponding market at that date event pair. . . . [I]t follows that, in equilibrium the traders would have strategies (plans) such that if these strategies were carried out, the markets would be cleared at each date-event pair. Call such plans consistent. A set of common price expectations and corresponding consistent plans is called an equilibrium of plans, prices, and price expectations.

My only problem with Radner’s formulation here is that he is defining his equilibrium concept in terms of the intrinsic capacity of the traders to predict prices rather the simple fact that traders form correct expectations. For purposes of the formal definition of EPPE, it is irrelevant whether traders predictions of future prices are correct because they are endowed with the correct model of the economy or because they are all lucky and randomly have happened simultaneously to form the same expectations of future prices. Radner also formulates an alternative version of his perfect-foresight approach in which agents don’t all share the same information. In such cases, it becomes possible for traders to make inferences about the environment by observing prices differ from what they had expected.

The situation in which traders enter the market with different non-price information presents an opportunity for agents to learn about the environment from prices, since current prices reflect, in a possibly complicated manner, the non-price information signals received by the various agents. To take an extreme example, the “inside information” of a trader in a securities market may lead him to bid up the price to a level higher than it otherwise would have been. . . . [A]n astute market observer might be able to infer that an insider has obtained some favourable information, just by careful observation of the price movement.

The ability to infer non-price information from otherwise inexplicable movements in prices leads Radner to define a concept of rational expectations equilibrium.

[E]conomic agents have the opportunity to revise their individual models in the light of observations and published data. Hence, there is a feedback from the true relationship to the individual models. An equilibrium of this system, in which the individual models are identical with the true model, is called a rational expectations equilibrium. This concept of equilibrium is more subtle, of course, that the ordinary concept of equilibrium of supply and demand. In a rational expectations equilibrium, not only are prices determined so as to equate supply and demand, but individual economic agents correctly perceive the true relationship between the non-price information received by the market participants and the resulting equilibrium market prices.

Though this discussion is very interesting from several theoretical angles, as an explanation of what is entailed by an economic equilibrium, it misses the key point, which is the one that Hayek identified in his 1928 and (especially) 1937 articles mentioned in my previous posts. An equilibrium corresponds to a situation in which all agents have identical expectations of the future prices upon which they are making optimal plans given the commonly observed current prices and the expected future prices. If all agents are indeed formulating optimal plans based on the information that they have at that moment, their plans will be mutually consistent and will be executable simultaneously without revision as long as the state of their knowledge at that instant does not change. How it happened that they arrived at identical expectations — by luck chance or supernatural powers of foresight — is irrelevant to that definition of equilibrium. Radner does acknowledge that, under the perfect-foresight approach, he is endowing economic agents with a wildly unrealistic powers of imagination and computational capacity, but from his exposition, I am unable to decide whether he grasped the subtle but crucial point about the irrelevance of an assumption about the capacities of agents to the definition of EPPPE.

Although it is capable of describing a richer set of institutions and behavior than is the Arrow-Debreu model, the perfect-foresight approach is contrary to the spirit of much of competitive market theory in that it postulates that individual traders must be able to forecast, in some sense, the equilibrium prices that will prevail in the future under all alternative states of the environment. . . .[T]his approach . . . seems to require of the traders a capacity for imagination and computation far beyond what is realistic. . . .

These last considerations lead us in a different direction, which I shall call the bounded rationality approach. . . . An example of the bounded-rationality approach is the theory of temporary equilibrium.

By eschewing any claims about the rationality of the agents or their computational powers, one can simply talk about whether agents do or do not have identical expectations of future prices and what the implications of those assumptions are. When expectations do agree, there is at least a momentary equilibrium of plans, prices and price expectations. When they don’t agree, the question becomes whether even a temporary equilibrium exists and what kind of dynamic process is implied by the divergence of expectations. That it seems to me would be a fruitful way forward for macroeconomics to follow. In my next post, I will discuss some of the characteristics and implications of a temporary-equilibrium approach to macroeconomics.

 

Correct Foresight, Perfect Foresight, and Intertemporal Equilibrium

In my previous post, I discussed Hayek’s path-breaking insight into the meaning of intertemporal equilibrium. His breakthrough was to see that an equilibrium can be understood not as a stationary state in which nothing changes, but as a state in which decentralized plans are both optimal from the point of view of the individuals formulating the plans and mutually consistent, so that the individually optimal plans, at least potentially, could be simultaneously executed. In the simple one-period model, the plans of individuals extending over a single-period time horizon are constrained by the necessary equality for each agent between the value of all planned purchases and the value of all planned sales in that period. A single-period or stationary equilibrium, if it exists, is characterized by a set of prices such that the optimal plans corresponding to that set of prices such that total amount demanded for each product equals the total amount supplied for each product. Thus, an equilibrium price vector has the property that every individual is choosing optimally based on the choice criteria and the constraints governing the decisions for each individual and that those individually optimal choices are mutually consistent, that mutual consistency being manifested in the equality of the total amount demanded and the total amount supplied of each product in that single period.

The problem posed by the concept of intertemporal equilibrium is how to generalize the single-period notion of an equilibrium as a vector of all the observed prices of goods and services actually traded in that single period into a multi-period concept in which the prices on which optimal choices depend include both the actual prices of goods traded in the current period as well as the prices of goods and services that agents plan to buy or sell only in some future time period. In an intertemporal context, the prices on the basis of which optimal plans are chosen cannot be just those prices at which transactions are being executed in the current period; the relevant set of prices must also include those prices at which transactions already being planned in the current period will be executed. Because even choices about transactions today may depend on the prices at which future transactions will take place, future prices can affect not only future demands and supplies they can also affect current demands and supplies.

But because prices in future periods are typically not observable by individuals in the present, it is not observed — but expected — future prices on the basis of which individual agents are making the optimal choices reflected in their intertemporal plans. And insofar as optimal plans depend on expected future prices, those optimal plans can be mutually consistent only if they are based on the same expected future prices, because if their choices are based on different expected future prices, then it is not possible that all expectations are realized. If the expectations of at least one agent, and probably of many agents, will be disappointed, implying that the plans of at least one and probably of many agents will not be optimized and will have to be revised.

The recognition that the mutual consistency of optimal plans requires individuals to accurately foresee the future prices upon which their optimal choices are based suggested that individual agents must be endowed with remarkable capacities to foresee the future. To assume that all individual agents would be endowed with the extraordinary ability to foresee correctly all the future prices relevant to their optimal choices about their intertemporal plans seemed an exceedingly unrealistic assumption on which to premise an economic model.

This dismissive attitude toward the concept of intertemporal equilibrium and the seemingly related assumption of “perfect foresight” necessary for an intertemporal equilibrium to exist was stridently expressed by Oskar Morgenstern in his famous 1935 article “Perfect Foresight and Economic Equilibrium.”

The impossibly high claims which are attributed to the intellectual efficiency of the economic subject immediately indicate that there are included in this equilibrium system not ordinary men, but rather, at least to one another, exactly equal demi-gods, in case the claim of complete foresight is fulfilled. If this is the case, there is, of course, nothing more to be done. If “full” or “perfect” foresight is to provide the basis of the theory of equilibrium in the strictly specified sense, and in the meaning obviously intended by the economic authors, then, a completely meaningless assumption is being considered. If limitations are introduced in such a way that the perfection of foresight is not reached, then these limitations are to be stated very precisely. They would have to be so narrowly drawn that the fundamental aim of producing ostensibly full rationality of the system by means of high, de facto unlimited, foresight, would be lost. For the theoretical economist, there is no way out of this dilemma. ln this discussion, “full” and “perfect” foresight are not only used synonymously, but both are employed, moreover, in the essentialIy more exact sense of limitlessness. This expression would have to be preferred because with the words “perfect” or “imperfect”, there arise superficial valuations which play no role here at all.

Morgenstern then went on to make an even more powerful attack on the idea of perfect foresight: that the idea is itself self-contradictory. Interestingly, he did so by positing an example that would figure in Morgenstern’s later development of game theory with his collaborator John von Neumann (and, as we now know, with his research assistant who in fact was his mathematical guide and mentor, Abraham Wald, fcredited as a co-author of The Theory of Games and Economic Behavior).

Sherlock Holmes, pursued by his opponent, Moriarity, leaves London for Dover. The train stops at a station on the way, and he alights there rather than traveling on to Dover. He has seen Moriarity at the railway station, recognizes that he is very clever and expects that Moriarity will take a faster special train in order to catch him in Dover. Holmes’ anticipation turns out to be correct. But what if Moriarity had been still more clever, had estimated Holmes’ mental abilities better and had foreseen his actions accordingly? Then, obviously, he would have traveled to the intermediate station. Holmes, again, would have had to calculate that, and he himself would have decided to go on to Dover. Whereupon, Moriarity would again have “reacted” differently. Because of so much thinking they might not have been able to act at all or the intellectually weaker of the two would have surrendered to the other in the Victoria Station, since the whole flight would have become unnecessary. Examples of this kind can be drawn from everywhere. However, chess, strategy, etc. presuppose expert knowledge, which encumbers the example unnecessarily.

One may be easily convinced that here lies an insoluble paradox. And the situation is not improved, but, rather, greatly aggravated if we assume that more than two individuals-as, for example, is the case with exchange-are brought together into a position, which would correspond to the one brought forward here. Always, there is exhibited an endless chain of reciprocally conjectural reactions and counter-reactions. This chain can never be broken by an act of knowledge but always only through an arbitrary act-a resolution. This resolution, again, would have to be foreseen by the two or more persons concerned. The paradox still remains no matter how one attempts to twist or turn things around. Unlimited foresight and economic equilibrium are thus irreconcilable with one another. But can equilibrium really take place with a faulty, heterogeneous foresight, however, it may be disposed? This is the question which arises at once when an answer is sought. One can even say this: has foresight been truly introduced at all into the consideration of equilibrium, or, rather, does not the theorem of equilibrium generally stand in no proven connection with the assumptions about foresight, so that a false assumption is being considered?

As Carlo Zappia has shown, it was probably Morgenstern’s attack on the notion of intertemporal equilibrium and perfect foresight that led Hayek to his classic restatement of the idea in his 1937 paper “Economics and Knowledge.” The point that Hayek clarified in his 1937 version, but had not been clear in his earlier expositions of the concept, is that correct foresight is not an assumption from which the existence of an intertemporal equilibrium can be causally deduced; there is no assertion that a state of equilibrium is the result of correct foresight. Rather, correct foresight is the characteristic that defines what is meant when the term “intertemporal equilibrium” is used in economic theory. Morgenstern’s conceptual error was to mistake a tautological statement about what would have to be true if an intertemporal equilibrium were to obtain for a causal statement about what conditions would bring an intertemporal equilibrium into existence.

The idea of correct foresight does not attribute any special powers to the economic agents who might under hypothetical circumstances possess correct expectations of future prices. The term is not meant to be a description of an actual state of affairs, but a description of what would have to be true for a state of affairs to be an equilibrium state of affairs.

As an aside, I would simply mention that many years ago when I met Hayek and had the opportunity to ask him about his 1937 paper and his role in developing the concept of intertemporal equilibrium, he brought my attention to his 1928 paper in which he first described an intertemporal equilibrium as state of affairs in which agents had correct expectations about future prices. My recollection of that conversation is unfortunately rather vague, but I do remember that he expressed some regret for not having had the paper translated into English, which would have established his priority in articulating the intertemporal equilibrium concept. My recollection is that the reason he gave for not having had the paper translated into English was that there was something about the paper about which he felt dissatisfied, but I can no longer remember what it was that he said he was dissatisfied with. However, I would now be inclined to conjecture that he was dissatisfied with not having disambiguated, as he did in the 1937 paper, between correct foresight as a defining characteristic of what intertemporal equilibrium means versus perfect foresight as the cause that brings intertemporal equilibruim into existence.

It is also interesting to note that the subsequent development of game theory in which Morgenstern played a not insubstantial role, shows that under a probabilistic interpretation of the interaction between Holmes and Moriarity, there could be an optimal mixed strategy that would provide an equilibrium solution of repeated Holmes-Moriarity interactions. But if the interaction is treated as a single non-repeatable event with no mixed strategy available to either party, the correct interpretation of the interaction is certainly that there is no equilibrium solution to the interaction. If there is no equilibrium solution, then it is precisely the absence of an equilibrium solution that implies the impossibility of correct foresight, correct foresight and the existence of an equilibrium being logically equivalent concepts.

Hayek and Intertemporal Equilibrium

I am starting to write a paper on Hayek and intertemporal equilibrium, and as I write it over the next couple of weeks, I am going to post sections of it on this blog. Comments from readers will be even more welcome than usual, and I will do my utmost to reply to comments, a goal that, I am sorry to say, I have not been living up to in my recent posts.

The idea of equilibrium is an essential concept in economics. It is an essential concept in other sciences as well, its meaning in economics is not the same as in other disciplines. The concept having originally been borrowed from physics, the meaning originally attached to it by economists corresponded to the notion of a system at rest, and it took a long time for economists to see that viewing an economy as a system at rest was not the only, or even the most useful, way of applying the equilibrium concept to economic phenomena.

What would it mean for an economic system to be at rest? The obvious answer was to say that prices and quantities would not change. If supply equals demand in every market, and if there no exogenous change introduced into the system, e.g., in population, technology, tastes, etc., it would seem that would be no reason for the prices paid and quantities produced to change in that system. But that view of an economic system was a very restrictive one, because such a large share of economic activity – savings and investment — is predicated on the assumption and expectation of change.

The model of a stationary economy at rest in which all economic activity simply repeats what has already happened before did not seem very satisfying or informative, but that was the view of equilibrium that originally took hold in economics. The idea of a stationary timeless equilibrium can be traced back to the classical economists, especially Ricardo and Mill who wrote about the long-run tendency of an economic system toward a stationary state. But it was the introduction by Jevons, Menger, Walras and their followers of the idea of optimizing decisions by rational consumers and producers that provided the key insight for a more robust and fruitful version of the equilibrium concept.

If each economic agent (household or business firm) is viewed as making optimal choices based on some scale of preferences subject to limitations or constraints imposed by their capacities, endowments, technology and the legal system, then the equilibrium of an economy must describe a state in which each agent, given his own subjective ranking of the feasible alternatives, is making a optimal decision, and those optimal decisions are consistent with those of all other agents. The optimal decisions of each agent must simultaneously be optimal from the point of view of that agent while also being consistent, or compatible, with the optimal decisions of every other agent. In other words, the decisions of all buyers of how much to purchase must be consistent with the decisions of all sellers of how much to sell.

The idea of an equilibrium as a set of independently conceived, mutually consistent optimal plans was latent in the earlier notions of equilibrium, but it could not be articulated until a concept of optimality had been defined. That concept was utility maximization and it was further extended to include the ideas of cost minimization and profit maximization. Once the idea of an optimal plan was worked out, the necessary conditions for the mutual consistency of optimal plans could be articulated as the necessary conditions for a general economic equilibrium. Once equilibrium was defined as the consistency of optimal plans, the path was clear to define an intertemporal equilibrium as the consistency of optimal plans extending over time. Because current goods and services and otherwise identical goods and services in the future could be treated as economically distinct goods and services, defining the conditions for an intertemporal equilibrium was formally almost equivalent to defining the conditions for a static, stationary equilibrium. Just as the conditions for a static equilibrium could be stated in terms of equalities between marginal rates of substitution of goods in consumption and in production to their corresponding price ratios, an intertemporal equilibrium could be stated in terms of equalities between the marginal rates of intertemporal substitution in consumption and in production and their corresponding intertemporal price ratios.

The only formal adjustment required in the necessary conditions for static equilibrium to be extended to intertemporal equilibrium was to recognize that, inasmuch as future prices (typically) are unobservable, and hence unknown to economic agents, the intertemporal price ratios cannot be ratios between actual current prices and actual future prices, but, instead, ratios between current prices and expected future prices. From this it followed that for optimal plans to be mutually consistent, all economic agents must have the same expectations of the future prices in terms of which their plans were optimized.

The concept of an intertemporal equilibrium was first presented in English by F. A. Hayek in his 1937 article “Economics and Knowledge.” But it was through J. R. Hicks’s Value and Capital published two years later in 1939 that the concept became more widely known and understood. In explaining and applying the concept of intertemporal equilibrium and introducing the derivative concept of a temporary equilibrium in which current markets clear, but individual expectations of future prices are not the same, Hicks did not claim originality, but instead of crediting Hayek for the concept, or even mentioning Hayek’s 1937 paper, Hicks credited the Swedish economist Erik Lindahl, who had published articles in the early 1930s in which he had articulated the concept. But although Lindahl had published his important work on intertemporal equilibrium before Hayek’s 1937 article, Hayek had already explained the concept in a 1928 article “Das intertemporale Gleichgewichtasystem der Priese und die Bewegungen des ‘Geltwertes.'” (English translation: “Intertemporal price equilibrium and movements in the value of money.“)

Having been a junior colleague of Hayek’s in the early 1930s when Hayek arrived at the London School of Economics, and having come very much under Hayek’s influence for a few years before moving in a different theoretical direction in the mid-1930s, Hicks was certainly aware of Hayek’s work on intertemporal equilibrium, so it has long been a puzzle to me why Hicks did not credit Hayek along with Lindahl for having developed the concept of intertemporal equilibrium. It might be worth pursuing that question, but I mention it now only as an aside, in the hope that someone else might find it interesting and worthwhile to try to find a solution to that puzzle. As a further aside, I will mention that Murray Milgate in a 1979 article “On the Origin of the Notion of ‘Intertemporal Equilibrium’” has previously tried to redress the failure to credit Hayek’s role in introducing the concept of intertemporal equilibrium into economic theory.

What I am going to discuss in here and in future posts are three distinct ways in which the concept of intertemporal equilibrium has been developed since Hayek’s early work – his 1928 and 1937 articles but also his 1941 discussion of intertemporal equilibrium in The Pure Theory of Capital. Of course, the best known development of the concept of intertemporal equilibrium is the Arrow-Debreu-McKenzie (ADM) general-equilibrium model. But although it can be thought of as a model of intertemporal equilibrium, the ADM model is set up in such a way that all economic decisions are taken before the clock even starts ticking; the transactions that are executed once the clock does start simply follow a pre-determined script. In the ADM model, the passage of time is a triviality, merely a way of recording the sequential order of the predetermined production and consumption activities. This feat is accomplished by assuming that all agents are present at time zero with their property endowments in hand and capable of transacting – but conditional on the determination of an equilibrium price vector that allows all optimal plans to be simultaneously executed over the entire duration of the model — in a complete set of markets (including state-contingent markets covering the entire range of contingent events that will unfold in the course of time whose outcomes could affect the wealth or well-being of any agent with the probabilities associated with every contingent event known in advance).

Just as identical goods in different physical locations or different time periods can be distinguished as different commodities that cn be purchased at different prices for delivery at specific times and places, identical goods can be distinguished under different states of the world (ice cream on July 4, 2017 in Washington DC at 2pm only if the temperature is greater than 90 degrees). Given the complete set of state-contingent markets and the known probabilities of the contingent events, an equilibrium price vector for the complete set of markets would give rise to optimal trades reallocating the risks associated with future contingent events and to an optimal allocation of resources over time. Although the ADM model is an intertemporal model only in a limited sense, it does provide an ideal benchmark describing the characteristics of a set of mutually consistent optimal plans.

The seminal work of Roy Radner in relaxing some of the extreme assumptions of the ADM model puts Hayek’s contribution to the understanding of the necessary conditions for an intertemporal equilibrium into proper perspective. At an informal level, Hayek was addressing the same kinds of problems that Radner analyzed with far more powerful analytical tools than were available to Hayek. But the were both concerned with a common problem: under what conditions could an economy with an incomplete set of markets be said to be in a state of intertemporal equilibrium? In an economy lacking the full set of forward and state contingent markets describing the ADM model, intertemporal equilibrium cannot predetermined before trading even begins, but must, if such an equilibrium obtains, unfold through the passage of time. Outcomes might be expected, but they would not be predetermined in advance. Echoing Hayek, though to my knowledge he does not refer to Hayek in his work, Radner describes his intertemporal equilibrium under uncertainty as an equilibrium of plans, prices, and price expectations. Even if it exists, the Radner equilibrium is not the same as the ADM equilibrium, because without a full set of markets, agents can’t fully hedge against, or insure, all the risks to which they are exposed. The distinction between ex ante and ex post is not eliminated in the Radner equilibrium, though it is eliminated in the ADM equilibrium.

Additionally, because all trades in the ADM model have been executed before “time” begins, it seems impossible to rationalize holding any asset whose only use is to serve as a medium of exchange. In his early writings on business cycles, e.g., Monetary Theory and the Trade Cycle, Hayek questioned whether it would be possible to rationalize the holding of money in the context of a model of full equilibrium, suggesting that monetary exchange, by severing the link between aggregate supply and aggregate demand characteristic of a barter economy as described by Say’s Law, was the source of systematic deviations from the intertemporal equilibrium corresponding to the solution of a system of Walrasian equations. Hayek suggested that progress in analyzing economic fluctuations would be possible only if the Walrasian equilibrium method could be somehow be extended to accommodate the existence of money, uncertainty, and other characteristics of the real world while maintaining the analytical discipline imposed by the equilibrium method and the optimization principle. It proved to be a task requiring resources that were beyond those at Hayek’s, or probably anyone else’s, disposal at the time. But it would be wrong to fault Hayek for having had to insight to perceive and frame a problem that was beyond his capacity to solve. What he may be criticized for is mistakenly believing that he he had in fact grasped the general outlines of a solution when in fact he had only perceived some aspects of the solution and offering seriously inappropriate policy recommendations based on that seriously incomplete understanding.

In Value and Capital, Hicks also expressed doubts whether it would be possible to analyze the economic fluctuations characterizing the business cycle using a model of pure intertemporal equilibrium. He proposed an alternative approach for analyzing fluctuations which he called the method of temporary equilibrium. The essence of the temporary-equilibrium method is to analyze the behavior of an economy under the assumption that all markets for current delivery clear (in some not entirely clear sense of the term “clear”) while understanding that demand and supply in current markets depend not only on current prices but also upon expected future prices, and that the failure of current prices to equal what they had been expected to be is a potential cause for the plans that economic agents are trying to execute to be modified and possibly abandoned. In the Pure Theory of Capital, Hayek discussed Hicks’s temporary-equilibrium method a possible method of achieving the modification in the Walrasian method that he himself had proposed in Monetary Theory and the Trade Cycle. But after a brief critical discussion of the method, he dismissed it for reasons that remain obscure. Hayek’s rejection of the temporary-equilibrium method seems in retrospect to have been one of Hayek’s worst theoretical — or perhaps, meta-theoretical — blunders.

Decades later, C. J. Bliss developed the concept of temporary equilibrium to show that temporary equilibrium method can rationalize both holding an asset purely for its services as a medium of exchange and the existence of financial intermediaries (private banks) that supply financial assets held exclusively to serve as a medium of exchange. In such a temporary-equilibrium model with financial intermediaries, it seems possible to model not only the existence of private suppliers of a medium of exchange, but also the conditions – in a very general sense — under which the system of financial intermediaries breaks down. The key variable of course is vectors of expected prices subject to which the plans of individual households, business firms, and financial intermediaries are optimized. The critical point that emerges from Bliss’s analysis is that there are sets of expected prices, which if held by agents, are inconsistent with the existence of even a temporary equilibrium. Thus price flexibility in current market cannot, in principle, result in even a temporary equilibrium, because there is no price vector of current price in markets for present delivery that solves the temporary-equilibrium system. Even perfect price flexibility doesn’t lead to equilibrium if the equilibrium does not exist. And the equilibrium cannot exist if price expectations are in some sense “too far out of whack.”

Expected prices are thus, necessarily, equilibrating variables. But there is no economic mechanism that tends to cause the adjustment of expected prices so that they are consistent with the existence of even a temporary equilibrium, much less a full equilibrium.

Unfortunately, modern macroeconomics continues to neglect the temporary-equilibrium method; instead macroeconomists have for the most part insisted on the adoption of the rational-expectations hypothesis, a hypothesis that elevates question-begging to the status of a fundamental axiom of rationality. The crucial error in the rational-expectations hypothesis was to misunderstand the role of the comparative-statics method developed by Samuelson in The Foundations of Economic Analysis. The role of the comparative-statics method is to isolate the pure theoretical effect of a parameter change under a ceteris-paribus assumption. Such an effect could be derived only by comparing two equilibria under the assumption of a locally unique and stable equilibrium before and after the parameter change. But the method of comparative statics is completely inappropriate to most macroeconomic problems which are precisely concerned with the failure of the economy to achieve, or even to approximate, the unique and stable equilibrium state posited by the comparative-statics method.

Moreover, the original empirical application of the rational-expectations hypothesis by Muth was in the context of the behavior of a single market in which the market was dominated by well-informed specialists who could be presumed to have well-founded expectations of future prices conditional on a relatively stable economic environment. Under conditions of macroeconomic instability, there is good reason to doubt that the accumulated knowledge and experience of market participants would enable agents to form accurate expectations of the future course of prices even in those markets about which they expert knowledge. Insofar as the rational expectations hypothesis has any claim to empirical relevance it is only in the context of stable market situations that can be assumed to be already operating in the neighborhood of an equilibrium. For the kinds of problems that macroeconomists are really trying to answer that assumption is neither relevant nor appropriate.

A Primer on Equilibrium

After my latest post about rational expectations, Henry from Australia, one of my most prolific commenters, has been engaging me in a conversation about what assumptions are made – or need to be made – for an economic model to have a solution and for that solution to be characterized as an equilibrium, and in particular, a general equilibrium. Equilibrium in economics is not always a clearly defined concept, and it can have a number of different meanings depending on the properties of a given model. But the usual understanding is that the agents in the model (as consumers or producers) are trying to do as well for themselves as they can, given the endowments of resources, skills and technology at their disposal and given their preferences. The conversation was triggered by my assertion that rational expectations must be “compatible with the equilibrium of the model in which those expectations are embedded.”

That was the key insight of John Muth in his paper introducing the rational-expectations assumption into economic modelling. So in any model in which the current and future actions of individuals depend on their expectations of the future, the model cannot arrive at an equilibrium unless those expectations are consistent with the equilibrium of the model. If the expectations of agents are incompatible or inconsistent with the equilibrium of the model, then, since the actions taken or plans made by agents are based on those expectations, the model cannot have an equilibrium solution.

Now Henry thinks that this reasoning is circular. My argument would be circular if I defined an equilibrium to be the same thing as correct expectations. But I am not so defining an equilibrium. I am saying that the correctness of expectations by all agents implies 1) that their expectations are mutually consistent, and 2) that, having made plans, based on their expectations, which, by assumption, agents felt were the best set of choices available to them given those expectations, if the expectations of the agents are realized, then they would not regret the decisions and the choices that they made. Each agent would be as well off as he could have made himself, given his perceived opportunities when the decision were made. That the correctness of expectations implies equilibrium is the consequence of assuming that agents are trying to optimize their decision-making process, given their available and expected opportunities. If all expected opportunities are correctly foreseen, then all decisions will have been the optimal decisions under the circumstances. But nothing has been said that requires all expectations to be correct, or even that it is possible for all expectations to be correct. If an equilibrium does not exist, and just because you can write down an economic model, it does not mean that a solution to the model exists, then the sweet spot where all expectations are consistent and compatible is just a blissful fantasy. So a logical precondition to showing that rational expectations are even possible is to prove that an equilibrium exists. There is nothing circular about the argument.

Now the key to proving the existence of a general equilibrium is to show that the general equilibrium model implies the existence of what mathematicians call a fixed point. A fixed point is said to exist when there is a mapping – a rule or a function – that takes every point in a convex compact set of points and assigns that point to another point in the same set. A convex, compact set has two important properties: 1) the line connecting any two points in the set is entirely contained within the boundaries of the set, and 2) there are no gaps between any two points in set. The set of points in a circle or a rectangle is a convex compact set; the set of points contained in the Star of David is not a convex set. Any two points in the circle will be connected by a line that lies completely within the circle; the points at adjacent edges of a Star of David will be connected by a line that lies entirely outside the Star of David.

If you think of the set of all possible price vectors for an economy, those vectors – each containing a price for each good or service in the economy – could be mapped onto itself in the following way. Given all the equations describing the behavior of each agent in the economy, the quantity demanded and supplied of each good could be calculated, giving us the excess demand (the difference between amount demand and supplied) for each good. Then the price of every good in excess demand would be raised, the price of every good in negative excess demand would be reduced, and the price of every good with zero excess demand would be held constant. To ensure that the mapping was taking a point from a given convex set onto itself, all prices could be normalized so that they would have the property that the sum of all the individual prices would always equal 1. The fixed point theorem ensures that for a mapping from one convex compact set onto itself there must be at least one fixed point, i.e., at least one point in the set that gets mapped onto itself. The price vector corresponding to that point is an equilibrium, because, given how our mapping rule was defined, a point would be mapped onto itself if and only if all excess demands are zero, so that no prices changed. Every fixed point – and there may be one or more fixed points – corresponds to an equilibrium price vector and every equilibrium price vector is associated with a fixed point.

Before going on, I ought to make an important observation that is often ignored. The mathematical proof of the existence of an equilibrium doesn’t prove that the economy operates at an equilibrium, or even that the equilibrium could be identified under the mapping rule described (which is a kind of formalization of the Walrasian tatonnement process). The mapping rule doesn’t guarantee that you would ever discover a fixed point in any finite amount of iterations. Walras thought the price adjustment rule of raising the prices of goods in excess demand and reducing prices of goods in excess supply would converge on the equilibrium price vector. But the conditions under which you can prove that the naïve price-adjustment rule converges to an equilibrium price vector turn out to be very restrictive, so even though we can prove that the competitive model has an equilibrium solution – in other words the behavioral, structural and technological assumptions of the model are coherent, meaning that the model has a solution, the model has no assumptions about how prices are actually determined that would prove that the equilibrium is ever reached. In fact, the problem is even more daunting than the previous sentence suggest, because even Walrasian tatonnement imposes an incredibly powerful restriction, namely that no trading is allowed at non-equilibrium prices. In practice there are almost never recontracting provisions allowing traders to revise the terms of their trades once it becomes clear that the prices at which trades were made were not equilibrium prices.

I now want to show how price expectations fit into all of this, because the original general equilibrium models were either one-period models or formal intertemporal models that were reduced to single-period models by assuming that all trading for future delivery was undertaken in the first period by long-lived agents who would eventually carry out the transactions that were contracted in period 1 for subsequent consumption and production. Time was preserved in a purely formal, technical way, but all economic decision-making was actually concluded in the first period. But even though the early general-equilibrium models did not encompass expectations, one of the extraordinary precursors of modern economics, Augustin Cournot, who was way too advanced for his contemporaries even to comprehend, much less make any use of, what he was saying, had incorporated the idea of expectations into the solution of his famous economic model of oligopolistic price setting.

The key to oligopolistic pricing is that each oligopolist must take into account not just consumer demand for his product, and his own production costs; he must consider as well what actions will be taken by his rivals. This is not a problem for a competitive producer (a price-taker) or a pure monopolist. The price-taker simply compares the price at which he can sell as much as he wants with his production costs and decides how much it is worthwhile to produce by comparing his marginal cost to price ,and increases output until the marginal cost rises to match the price at which he can sell. The pure monopolist, if he knows, as is assumed in such exercises, or thinks he knows the shape of the customer demand curve, selects the price and quantity combination on the demand curve that maximizes total profit (corresponding to the equality of marginal revenue and marginal cost). In oligopolistic situations, each producer must take into account how much his rivals will sell, or what prices they will set.

It was by positing such a situation and finding an analytic solution, that Cournot made a stunning intellectual breakthrough. In the simple duopoly case, Cournot posited that if the duopolists had identical costs, then each could find his optimal price conditional on the output chosen by the other. This is a simple profit-maximization problem for each duopolist, given a demand curve for the combined output of both (assumed to be identical, so that a single price must obtain for the output of both) a cost curve and the output of the other duopolist. Thus, for each duopolist there is a reaction curve showing his optimal output given the output of the other. See the accompanying figure.cournot

If one duopolist produces zero, the optimal output for the other is the monopoly output. Depending on what the level of marginal cost is, there is some output by either of the duopolists that is sufficient to make it unprofitable for the other duopolist to produce anything. That level of output corresponds to the competitive output where price just equals marginal cost. So the slope of the two reaction functions corresponds to the ratio of the monopoly output to the competitive output, which, with constant marginal cost is 2:1. Given identical costs, the two reaction curves are symmetric and the optimal output for each, given the expected output of the other, corresponds to the intersection of the two reaction curves, at which both duopolists produce the same quantity. The combined output of the two duopolists will be greater than the monopoly output, but less than the competitive output at which price equals marginal cost. With constant marginal cost, it turns out that each duopolist produces one-third of the competitive output. In the general case with n oligoplists, the ratio of the combined output of all n firms to the competitive output equals n/(n+1).

Cournot’s solution corresponds to a fixed point where the equilibrium of the model implies that both duopolists have correct expectations of the output of the other. Given the assumptions of the model, if the duopolists both expect the other to produce an output equal to one-third of the competitive output, their expectations will be consistent and will be realized. If either one expects the other to produce a different output, the outcome will not be an equilibrium, and each duopolist will regret his output decision, because the price at which he can sell his output will differ from the price that he had expected. In the Cournot case, you could define a mapping of a vector of the quantities that each duopolist had expected the other to produce and the corresponding planned output of each duopolist. An equilibrium corresponds to a case in which both duopolists expected the output planned by the other. If either duopolist expected a different output from what the other planned, the outcome would not be an equilibrium.

We can now recognize that Cournot’s solution anticipated John Nash’s concept of an equilibrium strategy in which player chooses a strategy that is optimal given his expectation of what the other player’s strategy will be. A Nash equilibrium corresponds to a fixed point in which each player chooses an optimal strategy based on the correct expectation of what the other player’s strategy will be. There may be more than one Nash equilibrium in many games. For example, rather than base their decisions on an expectation of the quantity choice of the other duopolist, the two duopolists could base their decisions on an expectation of what price the other duopolist would set. In the constant-cost case, this choice of strategies would lead to the competitive output because both duopolists would conclude that the optimal strategy of the other duopolist would be to charge a price just sufficient to cover his marginal cost. This was the alternative oligopoly model suggested by another French economist J. L. F. Bertrand. Of course there is a lot more to be said about how oligopolists strategize than just these two models, and the conditions under which one or the other model is the more appropriate. I just want to observe that assumptions about expectations are crucial to how we analyze market equilibrium, and that the importance of these assumptions for understanding market behavior has been recognized for a very long time.

But from a macroeconomic perspective, the important point is that expected prices become the critical equilibrating variable in the theory of general equilibrium and in macroeconomics in general. Single-period models of equilibrium, including general-equilibrium models that are formally intertemporal, but in which all trades are executed in the initial period at known prices in a complete array of markets determining all future economic activity, are completely sterile and useless for macroeconomics except as a stepping stone to analyzing the implications of imperfect forecasts of future prices. If we want to think about general equilibrium in a useful macroeconomic context, we have to think about a general-equilibrium system in which agents make plans about consumption and production over time based on only the vaguest conjectures about what future conditions will be like when the various interconnected stages of their plans will be executed.

Unlike the full Arrow-Debreu system of complete markets, a general-equilibrium system with incomplete markets cannot be equilibrated, even in principle, by price adjustments in the incomplete set of present markets. Equilibration depends on the consistency of expected prices with equilibrium. If equilibrium is characterized by a fixed point, the fixed point must be mapping of a set of vectors of current prices and expected prices on to itself. That means that expected future prices are as much equilibrating variables as current market prices. But expected future prices exist only in the minds of the agents, they are not directly subject to change by market forces in the way that prices in actual markets are. If the equilibrating tendencies of market prices in a system of complete markets are very far from completely effective, the equilibrating tendencies of expected future prices may not only be non-existent, but may even be potentially disequilibrating rather than equilibrating.

The problem of price expectations in an intertemporal general-equilibrium system is central to the understanding of macroeconomics. Hayek, who was the father of intertemporal equilibrium theory, which he was the first to outline in a 1928 paper in German, and who explained the problem with unsurpassed clarity in his 1937 paper “Economics and Knowledge,” unfortunately did not seem to acknowledge its radical consequences for macroeconomic theory, and the potential ineffectiveness of self-equilibrating market forces. My quarrel with rational expectations as a strategy of macroeconomic analysis is its implicit assumption, lacking any analytical support, that prices and price expectations somehow always adjust to equilibrium values. In certain contexts, when there is no apparent basis to question whether a particular market is functioning efficiently, rational expectations may be a reasonable working assumption for modelling observed behavior. However, when there is reason to question whether a given market is operating efficiently or whether an entire economy is operating close to its potential, to insist on principle that the rational-expectations assumption must be made, to assume, in other words, that actual and expected prices adjust rapidly to their equilibrium values allowing an economy to operate at or near its optimal growth path, is simply, as I have often said, an exercise in circular reasoning and question begging.

Price Stickiness Is a Symptom not a Cause

In my recent post about Nick Rowe and the law of reflux, I mentioned in passing that I might write a post soon about price stickiness. The reason that I thought it would be worthwhile writing again about price stickiness (which I have written about before here and here), because Nick, following a broad consensus among economists, identifies price stickiness as a critical cause of fluctuations in employment and income. Here’s how Nick phrased it:

An excess demand for land is observed in the land market. An excess demand for bonds is observed in the bond market. An excess demand for equities is observed in the equity market. An excess demand for money is observed in any market. If some prices adjust quickly enough to clear their market, but other prices are sticky so their markets don’t always clear, we may observe an excess demand for money as an excess supply of goods in those sticky-price markets, but the prices in flexible-price markets will still be affected by the excess demand for money.

Then a bit later, Nick continues:

If individuals want to save in the form of money, they won’t collectively be able to if the stock of money does not increase.There will be an excess demand for money in all the money markets, except those where the price of the non-money thing in that market is flexible and adjusts to clear that market. In the sticky-price markets there will nothing an individual can do if he wants to buy more money but nobody else wants to sell more. But in those same sticky-price markets any individual can always sell less money, regardless of what any other individual wants to do. Nobody can stop you selling less money, if that’s what you want to do.

Unable to increase the flow of money into their portfolios, each individual reduces the flow of money out of his portfolio. Demand falls in stick-price markets, quantity traded is determined by the short side of the market (Q=min{Qd,Qs}), so trade falls, and some traders that would be mutually advantageous in a barter or Walrasian economy even at those sticky prices don’t get made, and there’s a recession. Since money is used for trade, the demand for money depends on the volume of trade. When trade falls the flow of money falls too, and the stock demand for money falls, until the representative individual chooses a flow of money out of his portfolio equal to the flow in. He wants to increase the flow in, but cannot, since other individuals don’t want to increase their flows out.

The role of price stickiness or price rigidity in accounting for involuntary unemployment is an old and complicated story. If you go back and read what economists before Keynes had to say about the Great Depression, you will find that there was considerable agreement that, in principle, if workers were willing to accept a large enough cut in their wages, they could all get reemployed. That was a proposition accepted by Hawtry and by Keynes. However, they did not believe that wage cutting was a good way of restoring full employment, because the process of wage cutting would be brutal economically and divisive – even self-destructive – politically. So they favored a policy of reflation that would facilitate and hasten the process of recovery. However, there also those economists, e.g., Ludwig von Mises and the young Lionel Robbins in his book The Great Depression, (which he had the good sense to disavow later in life) who attributed high unemployment to an unwillingness of workers and labor unions to accept wage cuts and to various other legal barriers preventing the price mechanism from operating to restore equilibrium in the normal way that prices adjust to equate the amount demanded with the amount supplied in each and every single market.

But in the General Theory, Keynes argued that if you believed in the standard story told by microeconomics about how prices constantly adjust to equate demand and supply and maintain equilibrium, then maybe you should be consistent and follow the Mises/Robbins story and just wait for the price mechanism to perform its magic, rather than support counter-cyclical monetary and fiscal policies. So Keynes then argued that there is actually something wrong with the standard microeconomic story; price adjustments can’t ensure that overall economic equilibrium is restored, because the level of employment depends on aggregate demand, and if aggregate demand is insufficient, wage cutting won’t increase – and, more likely, would reduce — aggregate demand, so that no amount of wage-cutting would succeed in reducing unemployment.

To those upholding the idea that the price system is a stable self-regulating system or process for coordinating a decentralized market economy, in other words to those upholding microeconomic orthodoxy as developed in any of the various strands of the neoclassical paradigm, Keynes’s argument was deeply disturbing and subversive.

In one of the first of his many important publications, “Liquidity Preference and the Theory of Money and Interest,” Franco Modigliani argued that, despite Keynes’s attempt to prove that unemployment could persist even if prices and wages were perfectly flexible, the assumption of wage rigidity was in fact essential to arrive at Keynes’s result that there could be an equilibrium with involuntary unemployment. Modigliani did so by positing a model in which the supply of labor is a function of real wages. It was not hard for Modigliani to show that in such a model an equilibrium with unemployment required a rigid real wage.

Modigliani was not in favor of relying on price flexibility instead of counter-cyclical policy to solve the problem of involuntary unemployment; he just argued that the rationale for such policies had to be that prices and wages were not adjusting immediately to clear markets. But the inference that Modigliani drew from that analysis — that price flexibility would lead to an equilibrium with full employment — was not valid, there being no guarantee that price adjustments would necessarily lead to equilibrium, unless all prices and wages instantaneously adjusted to their new equilibrium in response to any deviation from a pre-existing equilibrium.

All the theory of general equilibrium tells us is that if all trading takes place at the equilibrium set of prices, the economy will be in equilibrium as long as the underlying “fundamentals” of the economy do not change. But in a decentralized economy, no one knows what the equilibrium prices are, and the equilibrium price in each market depends in principle on what the equilibrium prices are in every other market. So unless the price in every market is an equilibrium price, none of the markets is necessarily in equilibrium.

Now it may well be that if all prices are close to equilibrium, the small changes will keep moving the economy closer and closer to equilibrium, so that the adjustment process will converge. But that is just conjecture, there is no proof showing the conditions under which a simple rule that says raise the price in any market with an excess demand and decrease the price in any market with an excess supply will in fact lead to the convergence of the whole system to equilibrium. Even in a Walrasian tatonnement system, in which no trading at disequilibrium prices is allowed, there is no proof that the adjustment process will eventually lead to the discovery of the equilibrium price vector. If trading at disequilibrium prices is allowed, tatonnement is hopeless.

So the real problem is not that prices are sticky but that trading takes place at disequilibrium prices and there is no mechanism by which to discover what the equilibrium prices are. Modern macroeconomics solves this problem, in its characteristic fashion, by assuming it away by insisting that expectations are “rational.”

Economists have allowed themselves to make this absurd assumption because they are in the habit of thinking that the simple rule of raising price when there is an excess demand and reducing the price when there is an excess supply inevitably causes convergence to equilibrium. This habitual way of thinking has been inculcated in economists by the intense, and largely beneficial, training they have been subjected to in Marshallian partial-equilibrium analysis, which is built on the assumption that every market can be analyzed in isolation from every other market. But that analytic approach can only be justified under a very restrictive set of assumptions. In particular it is assumed that any single market under consideration is small relative to the whole economy, so that its repercussions on other markets can be ignored, and that every other market is in equilibrium, so that there are no changes from other markets that are impinging on the equilibrium in the market under consideration.

Neither of these assumptions is strictly true in theory, so all partial equilibrium analysis involves a certain amount of hand-waving. Nor, even if we wanted to be careful and precise, could we actually dispense with the hand-waving; the hand-waving is built into the analysis, and can’t be avoided. I have often referred to these assumptions required for the partial-equilibrium analysis — the bread and butter microeconomic analysis of Econ 101 — to be valid as the macroeconomic foundations of microeconomics, by which I mean that the casual assumption that microeconomics somehow has a privileged and secure theoretical position compared to macroeconomics and that macroeconomic propositions are only valid insofar as they can be reduced to more basic microeconomic principles is entirely unjustified. That doesn’t mean that we shouldn’t care about reconciling macroeconomics with microeconomics; it just means that the validity of proposition in macroeconomics is not necessarily contingent on being derived from microeconomics. Reducing macroeconomics to microeconomics should be an analytical challenge, not a methodological imperative.

So the assumption, derived from Modigliani’s 1944 paper that “price stickiness” is what prevents an economic system from moving automatically to a new equilibrium after being subjected to some shock or disturbance, reflects either a misunderstanding or a semantic confusion. It is not price stickiness that prevents the system from moving toward equilibrium, it is the fact that individuals are engaging in transactions at disequilibrium prices. We simply do not know how to compare different sets of non-equilibrium prices to determine which set of non-equilibrium prices will move the economy further from or closer to equilibrium. Our experience and out intuition suggest that in some neighborhood of equilibrium, an economy can absorb moderate shocks without going into a cumulative contraction. But all we really know from theory is that any trading at any set of non-equilibrium prices can trigger an economic contraction, and once it starts to occur, a contraction may become cumulative.

It is also a mistake to assume that in a world of incomplete markets, the missing markets being markets for the delivery of goods and the provision of services in the future, any set of price adjustments, however large, could by themselves ensure that equilibrium is restored. With an incomplete set of markets, economic agents base their decisions not just on actual prices in the existing markets; they base their decisions on prices for future goods and services which can only be guessed at. And it is only when individual expectations of those future prices are mutually consistent that equilibrium obtains. With inconsistent expectations of future prices, the adjustments in current prices in the markets that exist for currently supplied goods and services that in some sense equate amounts demanded and supplied, lead to a (temporary) equilibrium that is not efficient, one that could be associated with high unemployment and unused capacity even though technically existing markets are clearing.

So that’s why I regard the term “sticky prices” and other similar terms as very unhelpful and misleading; they are a kind of mental crutch that economists are too ready to rely on as a substitute for thinking about what are the actual causes of economic breakdowns, crises, recessions, and depressions. Most of all, they represent an uncritical transfer of partial-equilibrium microeconomic thinking to a problem that requires a system-wide macroeconomic approach. That approach should not ignore microeconomic reasoning, but it has to transcend both partial-equilibrium supply-demand analysis and the mathematics of intertemporal optimization.

Thinking about Interest and Irving Fisher

In two recent posts I have discussed Keynes’s theory of interest and the natural rate of interest. My goal in both posts was not to give my own view of the correct way to think about what determines interest rates,  but to identify and highlight problems with Keynes’s liquidity-preference theory of interest, and with the concept of a natural rate of interest. The main point that I wanted to make about Keynes’s liquidity-preference theory was that although Keynes thought that he was explaining – or perhaps, explicating — the rate of interest, his theory was nothing more than an explanation of why, typically, the nominal pecuniary yield on holding cash is less than the nominal yield on holding real assets, the difference in yield being attributable to the liquidity services derived from holding a maximally liquid asset rather than holding an imperfectly liquid asset. Unfortunately, Keynes imagined that by identifying and explaining the liquidity premium on cash, he had thereby explained the real yield on holding physical capital assets; he did nothing of the kind, as the marvelous exposition of the theory of own rates of interest in chapter 17 of the General Theory unwittingly demonstrates.

For expository purposes, I followed Keynes in contrasting his liquidity-preference theory with what he called the classical theory of interest, which he identified with Alfred Marshall, in which the rate of interest is supposed to be the rate that equilibrates saving and investment. I criticized Keynes for attributing this theory to Marshall rather than to Irving Fisher, which was, I am now inclined to think, a mistake on my part, because I doubt, based on a quick examination of Fisher’s two great books The Rate of Interest and The Theory of Interest, that he ever asserted that the rate of interest is determined by equilibrating savings and investment. (I actually don’t know if Marshall did or did make such an assertion.) But I think it’s clear that Fisher did not formulate his theory in terms of equating investment and savings via adjustments in the rate of interest rate. Fisher, I think, did agree (but I can’t quote a passage to this effect) that savings and investment are equal in equilibrium, but his analysis of the determination of the rate of interest was not undertaken in terms of equalizing two flows, i.e., savings and investment. Instead the analysis was carried out in terms of individual or household decisions about how much to consume out of current and expected future income, and in terms of decisions by business firms about how much available resources to devote to producing output for current consumption versus producing for future consumption. Fisher showed (in Walrasian fashion) that there are exactly enough equations in his system to solve for all the independent variables, so that his system had a solution. (That Walrasian argument of counting equations and unknowns is mathematically flawed, but later work by my cousin Abraham Wald and subsequently by Arrow, Debreu and McKenzie showed that Fisher’s claim could, under some more or less plausible assumptions, be proved in a mathematically rigorous way.)

Maybe it was Knut Wicksell who in his discussions of the determination of the rate of interest argued that the rate of interest is responsible for equalizing savings and investment, but that was not how Fisher understood what the rate of interest is all about. The Wicksellian notion that the equilibrium rate of interest equalizes savings and investment was thus a misunderstanding of the Fisherian theory, and it would be a worthwhile endeavor to trace the genesis and subsequent development of this misunderstanding to the point that Keynes and his contemporaries could have thought that they were giving an accurate representation of what orthodox theory asserted when they claimed that according to orthodox theory the rate of interest is what ensures equality between savings and investment.

This mistaken doctrine was formalized as the loanable-funds theory of interest – I believe that Dennis Robertson is usually credited with originating this term — in which savings is represented as the supply of loanable funds and investment is represented as the demand for loanable funds, with the rate of interest serving as a sort of price that is determined in Marshallian fashion by the intersection of the two schedules. Somehow it became accepted that the loanable-funds doctrine is the orthodox theory of interest determination, but it is clear from Fisher and from standard expositions of the neoclassical theory of interest which are of course simply extensions of Fisher’s work) that the loanable-funds theory is mistaken and misguided at a very basic level. (At this point, I should credit George Blackford for his comments on my post about Keynes’s theory of the rate of interest for helping me realize that it is not possible to make any sense out of the loanable-funds theory even though I am not sure that we agree on exactly why the loanable funds theory doesn’t make sense. Not that I had espoused the loanable-funds theory, but I did not fully appreciate its incoherence.)

Why do I say that the loanable-funds theory is mistaken and incoherent? Simply because it is fundamentally inconsistent with the essential properties of general-equilibrium analysis. In general-equilibrium analysis, interest rates emerge not as a separate subset of prices determined in a corresponding subset of markets; they emerge from the intertemporal relationships between and across all asset markets and asset prices. To view the rate of interest as being determined in a separate market for loanable funds as if the rate of interest were not being simultaneously determined in all asset markets is a complete misunderstanding of the theory of intertemporal general equilibrium.

Here’s how Fisher put over a century ago in The Rate of Interest:

We thus need to distinguish between interest in terms of money and interest in terms of goods. The first thought suggested by this fact is that the rate of interest in money is “nominal” and that in goods “real.” But this distinction is not sufficient, for no two forms of goods maintain or are expected to maintain, a constant price ratio toward each other. There are therefore just as many rates of interest in goods as there are forms of goods diverging in value. (p. 84, Fisher’s emphasis).

So a quarter of a century before Sraffa supposedly introduced the idea of own rates of interest in his 1932 review of Hayek’s Prices and Production, Fisher had done so in his first classic treatise on interest, which reproduced the own-rate analysis in his 1896 monograph Appreciation and Interest. While crediting Sraffa for introducing the concept of own rates of interest, Keynes, in chapter 17, simply — and brilliantly extends the basics of Fisher’s own-rate analysis, incorporating the idea of liquidity preference and silently correcting Sraffa insofar as his analysis departed from Fisher’s.

Christopher Bliss in his own classic treatise on the theory of interest, expands upon Fisher’s point.

According to equilibrium theory – according indeed to any theory of economic action which relates firms’ decisions to prospective profit and households’ decisions to budget-constrained searches for the most preferred combination of goods – it is prices which play the fundamental role. This is because prices provide the weights to be attached to the possible amendments to their net supply plans which the actors have implicitly rejected in deciding upon their choices. In an intertemporal economy it is then, naturally, present-value prices which play the fundamental role. Although this argument is mounted here on the basis of a consideration of an economy with forward markets in intertemporal equilibrium, it in no way depends on this particular foundation. As has been remarked, if forward markets are not in operation the economic actors have no choice but to substitute their “guesses” for the firm quotations of the forward markets. This will make a big difference, since full intertemporal equilibrium is not likely to be achieved unless there is a mechanism to check and correct for inconsistency in plans and expectations. But the forces that pull economic decisions one way or another are present-value prices . . . be they guesses or firm quotations. (pp. 55-56)

Changes in time preference therefore cause immediate changes in the present value prices of assets thereby causing corresponding changes in own rates of interest. Changes in own rates of interest constrain the rates of interest charged on money loans; changes in asset valuations and interest rates induce changes in production, consumption plans and the rate at which new assets are produced and capital accumulated. The notion that there is ever a separate market for loanable funds in which the rate of interest is somehow determined, and savings and investment are somehow equilibrated is simply inconsistent with the basic Fisherian theory of the rate of interest.

Just as Nick Rowe argues that there is no single market in which the exchange value of money (medium of account) is determined, because money is exchanged for goods in all markets, there can be no single market in which the rate of interest is determined because the value of every asset depends on the rate of interest at which the expected income or service-flow derived from the asset is discounted. The determination of the rate of interest can’t be confined to a single market.

Representative Agents, Homunculi and Faith-Based Macroeconomics

After my previous post comparing the neoclassical synthesis in its various versions to the mind-body problem, there was an interesting Twitter exchange between Steve Randy Waldman and David Andolfatto in which Andolfatto queried whether Waldman and I are aware that there are representative-agent models in which the equilibrium is not Pareto-optimal. Andalfatto raised an interesting point, but what I found interesting about it might be different from what Andalfatto was trying to show, which, I am guessing, was that a representative-agent modeling strategy doesn’t necessarily commit the theorist to the conclusion that the world is optimal and that the solutions of the model can never be improved upon by a monetary/fiscal-policy intervention. I concede the point. It is well-known I think that, given the appropriate assumptions, a general-equilibrium model can have a sub-optimal solution. Given those assumptions, the corresponding representative-agent will also choose a sub-optimal solution. So I think I get that, but perhaps there’s a more subtle point  that I’m missing. If so, please set me straight.

But what I was trying to argue was not that representative-agent models are necessarily optimal, but that representative-agent models suffer from an inherent, and, in my view, fatal, flaw: they can’t explain any real macroeconomic phenomenon, because a macroeconomic phenomenon has to encompass something more than the decision of a single agent, even an omniscient central planner. At best, the representative agent is just a device for solving an otherwise intractable general-equilibrium model, which is how I think Lucas originally justified the assumption.

Yet just because a general-equilibrium model can be formulated so that it can be solved as the solution of an optimizing agent does not explain the economic mechanism or process that generates the solution. The mathematical solution of a model does not necessarily provide any insight into the adjustment process or mechanism by which the solution actually is, or could be, achieved in the real world. Your ability to find a solution for a mathematical problem does not mean that you understand the real-world mechanism to which the solution of your model corresponds. The correspondence between your model may be a strictly mathematical correspondence which may not really be in any way descriptive of how any real-world mechanism or process actually operates.

Here’s an example of what I am talking about. Consider a traffic-flow model explaining how congestion affects vehicle speed and the flow of traffic. It seems obvious that traffic congestion is caused by interactions between the different vehicles traversing a thoroughfare, just as it seems obvious that market exchange arises as the result of interactions between the different agents seeking to advance their own interests. OK, can you imagine building a useful traffic-flow model based on solving for the optimal plan of a representative vehicle?

I don’t think so. Once you frame the model in terms of a representative vehicle, you have abstracted from the phenomenon to be explained. The entire exercise would be pointless – unless, that is, you assumed that interactions between vehicles are so minimal that they can be ignored. But then why would you be interested in congestion effects? If you want to claim that your model has any relevance to the effect of congestion on traffic flow, you can’t base the claim on an assumption that there is no congestion.

Or to take another example, suppose you want to explain the phenomenon that, at sporting events, all, or almost all, the spectators sit in their seats but occasionally get up simultaneously from their seats to watch the play on the field or court. Would anyone ever think that an explanation in terms of a representative spectator could explain that phenomenon?

In just the same way, a representative-agent macroeconomic model necessarily abstracts from the interactions between actual agents. Obviously, by abstracting from the interactions, the model can’t demonstrate that there are no interactions between agents in the real world or that their interactions are too insignificant to matter. I would be shocked if anyone really believed that the interactions between agents are unimportant, much less, negligible; nor have I seen an argument that interactions between agents are unimportant, the concept of network effects, to give just one example, being an important topic in microeconomics.

It’s no answer to say that all the interactions are accounted for within the general-equilibrium model. That is just a form of question-begging. The representative agent is being assumed because without him the problem of finding a general-equilibrium solution of the model is very difficult or intractable. Taking into account interactions makes the model too complicated to work with analytically, so it is much easier — but still hard enough to allow the theorist to perform some fancy mathematical techniques — to ignore those pesky interactions. On top of that, the process by which the real world arrives at outcomes to which a general-equilibrium model supposedly bears at least some vague resemblance can’t even be described by conventional modeling techniques.

The modeling approach seems like that of a neuroscientist saying that, because he could simulate the functions, electrical impulses, chemical reactions, and neural connections in the brain – which he can’t do and isn’t even close to doing, even though a neuroscientist’s understanding of the brain far surpasses any economist’s understanding of the economy – he can explain consciousness. Simulating the operation of a brain would not explain consciousness, because the computer on which the neuroscientist performed the simulation would not become conscious in the course of the simulation.

Many neuroscientists and other materialists like to claim that consciousness is not real, that it’s just an epiphenomenon. But we all have the subjective experience of consciousness, so whatever it is that someone wants to call it, consciousness — indeed the entire world of mental phenomena denoted by that term — remains an unexplained phenomenon, a phenomenon that can only be dismissed as unreal on the basis of a metaphysical dogma that denies the existence of anything that can’t be explained as the result of material and physical causes.

I call that metaphysical belief a dogma not because it’s false — I have no way of proving that it’s false — but because materialism is just as much a metaphysical belief as deism or monotheism. It graduates from belief to dogma when people assert not only that the belief is true but that there’s something wrong with you if you are unwilling to believe it as well. The most that I would say against the belief in materialism is that I can’t understand how it could possibly be true. But I admit that there are a lot of things that I just don’t understand, and I will even admit to believing in some of those things.

New Classical macroeconomists, like, say, Robert Lucas and, perhaps, Thomas Sargent, like to claim that unless a macroeconomic model is microfounded — by which they mean derived from an explicit intertemporal optimization exercise typically involving a representative agent or possibly a small number of different representative agents — it’s not an economic model, because the model, being vulnerable to the Lucas critique, is theoretically superficial and vacuous. But only models of intertemporal equilibrium — a set of one or more mutually consistent optimal plans — are immune to the Lucas critique, so insisting on immunity to the Lucas critique as a prerequisite for a macroeconomic model is a guarantee of failure if your aim to explain anything other than an intertemporal equilibrium.

Unless, that is, you believe that real world is in fact the realization of a general equilibrium model, which is what real-business-cycle theorists, like Edward Prescott, at least claim to believe. Like materialist believers that all mental states are epiphenomenous, and that consciousness is an (unexplained) illusion, real-business-cycle theorists purport to deny that there is such a thing as a disequilibrium phenomenon, the so-called business cycle, in their view, being nothing but a manifestation of the intertemporal-equilibrium adjustment of an economy to random (unexplained) productivity shocks. According to real-business-cycle theorists, such characteristic phenomena of business cycles as surprise, regret, disappointed expectations, abandoned and failed plans, the inability to find work at wages comparable to wages that other similar workers are being paid are not real phenomena; they are (unexplained) illusions and misnomers. The real-business-cycle theorists don’t just fail to construct macroeconomic models; they deny the very existence of macroeconomics, just as strict materialists deny the existence of consciousness.

What is so preposterous about the New-Classical/real-business-cycle methodological position is not the belief that the business cycle can somehow be modeled as a purely equilibrium phenomenon, implausible as that idea seems, but the insistence that only micro-founded business-cycle models are methodologically acceptable. It is one thing to believe that ultimately macroeconomics and business-cycle theory will be reduced to the analysis of individual agents and their interactions. But current micro-founded models can’t provide explanations for what many of us think are basic features of macroeconomic and business-cycle phenomena. If non-micro-founded models can provide explanations for those phenomena, even if those explanations are not fully satisfactory, what basis is there for rejecting them just because of a methodological precept that disqualifies all non-micro-founded models?

According to Kevin Hoover, the basis for insisting that only micro-founded macroeconomic models are acceptable, even if the microfoundation consists in a single representative agent optimizing for an entire economy, is eschatological. In other words, because of a belief that economics will eventually develop analytical or computational techniques sufficiently advanced to model an entire economy in terms of individual interacting agents, an analysis based on a single representative agent, as the first step on this theoretical odyssey, is somehow methodologically privileged over alternative models that do not share that destiny. Hoover properly rejects the presumptuous notion that an avowed, but unrealized, theoretical destiny, can provide a privileged methodological status to an explanatory strategy. The reductionist microfoundationalism of New-Classical macroeconomics and real-business-cycle theory, with which New Keynesian economists have formed an alliance of convenience, is truly a faith-based macroeconomics.

The remarkable similarity between the reductionist microfoundational methodology of New-Classical macroeconomics and the reductionist materialist approach to the concept of mind suggests to me that there is also a close analogy between the representative agent and what philosophers of mind call a homunculus. The Cartesian materialist theory of mind maintains that, at some place or places inside the brain, there resides information corresponding to our conscious experience. The question then arises: how does our conscious experience access the latent information inside the brain? And the answer is that there is a homunculus (or little man) that processes the information for us so that we can perceive it through him. For example, the homunculus (see the attached picture of the little guy) views the image cast by light on the retina as if he were watching a movie projected onto a screen.

homunculus

But there is an obvious fallacy, because the follow-up question is: how does our little friend see anything? Well, the answer must be that there’s another, smaller, homunculus inside his brain. You can probably already tell that this argument is going to take us on an infinite regress. So what purports to be an explanation turns out to be just a form of question-begging. Sound familiar? The only difference between the representative agent and the homunculus is that the representative agent begs the question immediately without having to go on an infinite regress.

PS I have been sidetracked by other responsibilities, so I have not been blogging much, if at all, for the last few weeks. I hope to post more frequently, but I am afraid that my posting and replies to comments are likely to remain infrequent for the next couple of months.

The Neoclassical Synthesis and the Mind-Body Problem

The neoclassical synthesis that emerged in the early postwar period aimed at reconciling the macroeconomic (IS-LM) analysis derived from Keynes via Hicks and others with the neoclassical microeconomic analysis of general equilibrium derived from Walras. The macroeconomic analysis was focused on an equilibrium of income and expenditure flows while the Walrasian analysis was focused on the equilibrium between supply and demand in individual markets. The two types of analysis seemed to be incommensurate inasmuch as the conditions for equilibrium in the two analysis did not seem to match up against each other. How does an analysis focused on the equality of aggregate flows of income and expenditure get translated into an analysis focused on the equality of supply and demand in individual markets? The two languages seem to be different, so it is not obvious how a statement formulated in one language gets translated into the other. And even if a translation is possible, does the translation hold under all, or only under some, conditions? And if so, what are those conditions?

The original neoclassical synthesis did not aim to provide a definitive answer to those questions, but it was understood to assert that if the equality of income and expenditure was assured at a level consistent with full employment, one could safely assume that market forces would take care of the allocation of resources, so that markets would be cleared and the conditions of microeconomic general equilibrium satisfied, at least as a first approximation. This version of the neoclassical synthesis was obviously ad hoc and an unsatisfactory resolution of the incommensurability of the two levels of analysis. Don Patinkin sought to provide a rigorous reconciliation of the two levels of analysis in his treatise Money, Interest and Prices. But for all its virtues – and they are numerous – Patinkin’s treatise failed to bridge the gap between the two levels of analysis.

As I mentioned recently in a post on Romer and Lucas, Kenneth Arrow in a 1967 review of Samuelson’s Collected Works commented disparagingly on the neoclassical synthesis of which Samuelson was a leading proponent. The widely shared dissatisfaction expressed by Arrow motivated much of the work that soon followed on the microfoundations of macroeconomics exemplified in the famous 1970 Phelps volume. But the motivation for the search for microfoundations was then (before the rational expectations revolution) to specify the crucial deviations from the assumptions underlying the standard Walrasian general-equilibrium model that would generate actual or seeming price rigidities, which a straightforward – some might say superficial — understanding of neoclassical microeconomic theory suggested were necessary to explain why, after a macro-disturbance, equilibrium was not rapidly restored by price adjustments. Two sorts of explanations emerged from the early microfoundations literature: a) search and matching theories assuming that workers and employers must expend time and resources to find appropriate matches; b) institutional theories of efficiency wages or implicit contracts that explain why employers and workers prefer layoffs to wage cuts in response to negative demand shocks.

Forty years on, the search and matching theories do not seem capable of accounting for the magnitude of observed fluctuations in employment or the cyclical variation in layoffs, and the institutional theories are still difficult to reconcile with the standard neoclassical assumptions, remaining an ad hoc appendage to New Keynesian models that otherwise adhere to the neoclassical paradigm. Thus, although the original neoclassical synthesis in which the Keynesian income-expenditure model was seen as a pre-condition for the validity of the neoclassical model was rejected within a decade of Arrow’s dismissive comment about the neoclassical synthesis, Tom Sargent has observed in a recent review of Robert Lucas’s Collected Papers on Monetary Theory that Lucas has implicitly adopted a new version of the neoclassical synthesis dominated by an intertemporal neoclassical general-equilibrium model, but with the proviso that substantial shocks to aggregate demand and the price level are prevented by monetary policy, thereby making the neoclassical model a reasonable approximation to reality.

Ok, so you are probably asking what does all this have to do with the mind-body problem? A lot, I think in that both the neoclassical synthesis and the mind-body problem involve a disconnect between two kinds – two levels – of explanation. The neoclassical synthesis asserts some sort of connection – but a problematic one — between the explanatory apparatus – macroeconomics — used to understand the cyclical fluctuations of what we are used to think of as the aggregate economy and the explanatory apparatus – microeconomics — used to understand the constituent elements of the aggregate economy — households and firms — and how those elements are related to, and interact with, each other.

The mind-body problem concerns the relationship between the mental – our direct experience of a conscious inner life of thoughts, emotions, memories, decisions, hopes and regrets — and the physical – matter, atoms, neurons. A basic postulate of science is that all phenomena have material causes. So the existence of conscious states that seem to us, by way of our direct experience, to be independent of material causes is also highly problematic. There are a few strategies for handling the problem. One is to assert that the mind truly is independent of the body, which is to say that consciousness is not the result of physical causes. A second is to say that mind is not independent of the body; we just don’t understand the nature of the relationship. There are two possible versions of this strategy: a) that although the nature of the relationship is unknown to us now, advances in neuroscience could reveal to us the way in which consciousness is caused by the operation of the brain; b) although our minds are somehow related to the operation of our brains, the nature of this relationship is beyond the capacity of our minds or brains to comprehend owing to considerations analogous to Godel’s incompleteness theorem (a view espoused by the philosopher Colin McGinn among others); in other words, the mind-body problem is inherently beyond human understanding. And the third strategy is to deny the existence of consciousness, because a conscious state is identical with the physical state of a brain, so that consciousness is just an epiphenomenon of a brain state; we in our naivete may think that our conscious states have a separate existence, but those states are strictly identical with corresponding brain states, so that whatever conscious state that we think we are experiencing has been entirely produced by the physical forces that determine the behavior of our brains and the configuration of its physical constituents.

The first, and probably the last, thing that one needs to understand about the third strategy is that, as explained by Colin McGinn (see e.g., here), its validity has not been demonstrated by neuroscience or by any other branch of science; it is, no less than any of the other strategies, strictly a metaphysical position. The mind-body problem is a problem precisely because science has not even come close to demonstrating how mental states are caused by, let alone that they are identical to, brain states, despite some spurious misinterpretations of research that purport to show such an identity.

Analogous to the scientific principle that all phenomena have material or physical causes, there is in economics and social science a principle called methodological individualism, which roughly states that explanations of social outcomes should be derived from theories about the conduct of individuals, not from theories about abstract social entities that exist independently of their constituent elements. The underlying motivation for methodological individualism (as opposed to political individualism with which it is related but from which it is distinct) was to counter certain ideas popular in the nineteenth and twentieth centuries asserting the existence of metaphysical social entities like “history” that are somehow distinct from yet impinge upon individual human beings, and that there are laws of history or social development from which future states of the world can be predicted, as Hegel, Marx and others tried to do. This notion gave rise to a two famous books by Popper: The Open Society and its Enemies and The Poverty of Historicism. Methodological individualism as articulated by Popper was thus primarily an attack on the attribution of special powers to determine the course of future events to abstract metaphysical or mystical entities like history or society that are supposedly things or beings in themselves distinct from the individual human beings of which they are constituted. Methodological individualism does not deny the existence of collective entities like society; it simply denies that such collective entities exist as objective facts that can be observed as such. Our apprehension of these entities must be built up from more basic elements — individuals and their plans, beliefs and expectations — that we can apprehend directly.

However, methodological individualism is not the same as reductionism; methodological individualism teaches us to look for explanations of higher-level phenomena, e.g., a pattern of social relationships like the business cycle, in terms of the basic constituents forming the pattern: households, business firms, banks, central banks and governments. It does not assert identity between the pattern of relationships and the constituent elements; it says that the pattern can be understood in terms of interactions between the elements. Thus, a methodologically individualistic explanation of the business cycle in terms of the interactions between agents – households, businesses, etc. — would be analogous to an explanation of consciousness in terms of the brain if an explanation of consciousness existed. A methodologically individualistic explanation of the business cycle would not be analogous to an assertion that consciousness exists only as an epiphenomenon of brain states. The assertion that consciousness is nothing but the epiphenomenon of a corresponding brain state is reductionist; it asserts an identity between consciousness and brain states without explaining how consciousness is caused by brain states.

In business-cycle theory, the analogue of such a reductionist assertion of identity between higher-level and lower level phenomena is the assertion that the business cycle is not the product of the interaction of individual agents, but is simply the optimal plan of a representative agent. On this account, the business cycle becomes an epiphenomenon; apparent fluctuations being nothing more than the optimal choices of the representative agent. Of course, everyone knows that the representative agent is merely a convenient modeling device in terms of which a business-cycle theorist tries to account for the observed fluctuations. But that is precisely the point. The whole exercise is a sham; the representative agent is an as-if device that does not ground business-cycle fluctuations in the conduct of individual agents and their interactions, but simply asserts an identity between those interactions and the supposed decisions of the fictitious representative agent. The optimality conditions in terms of which the model is solved completely disregard the interactions between individuals that might cause an unintended pattern of relationships between those individuals. The distinctive feature of methodological individualism is precisely the idea that the interactions between individuals can lead to unintended consequences; it is by way of those unintended consequences that a higher-level pattern might emerge from interactions among individuals. And those individual interactions are exactly what is suppressed by representative-agent models.

So the notion that any analysis premised on a representative agent provides microfoundations for macroeconomic theory seems to be a travesty built on a total misunderstanding of the principle of methodological individualism that it purports to affirm.

Krugman’s Second Best

A couple of days ago Paul Krugman discussed “Second-best Macroeconomics” on his blog. I have no real quarrel with anything he said, but I would like to amplify his discussion of what is sometimes called the problem of second-best, because I think the problem of second best has some really important implications for macroeconomics beyond the limited application of the problem that Krugman addressed. The basic idea underlying the problem of second best is not that complicated, but it has many applications, and what made the 1956 paper (“The General Theory of Second Best”) by R. G. Lipsey and Kelvin Lancaster a classic was that it showed how a number of seemingly disparate problems were really all applications of a single unifying principle. Here’s how Krugman frames his application of the second-best problem.

[T]he whole western world has spent years suffering from a severe shortfall of aggregate demand; in Europe a severe misalignment of national costs and prices has been overlaid on this aggregate problem. These aren’t hard problems to diagnose, and simple macroeconomic models — which have worked very well, although nobody believes it — tell us how to solve them. Conventional monetary policy is unavailable thanks to the zero lower bound, but fiscal policy is still on tap, as is the possibility of raising the inflation target. As for misaligned costs, that’s where exchange rate adjustments come in. So no worries: just hit the big macroeconomic That Was Easy button, and soon the troubles will be over.

Except that all the natural answers to our problems have been ruled out politically. Austerians not only block the use of fiscal policy, they drive it in the wrong direction; a rise in the inflation target is impossible given both central-banker prejudices and the power of the goldbug right. Exchange rate adjustment is blocked by the disappearance of European national currencies, plus extreme fear over technical difficulties in reintroducing them.

As a result, we’re stuck with highly problematic second-best policies like quantitative easing and internal devaluation.

I might quibble with Krugman about the quality of the available macroeconomic models, by which I am less impressed than he, but that’s really beside the point of this post, so I won’t even go there. But I can’t let the comment about the inflation target pass without observing that it’s not just “central-banker prejudices” and the “goldbug right” that are to blame for the failure to raise the inflation target; for reasons that I don’t claim to understand myself, the political consensus in both Europe and the US in favor of perpetually low or zero inflation has been supported with scarcely any less fervor by the left than the right. It’s only some eccentric economists – from diverse positions on the political spectrum – that have been making the case for inflation as a recovery strategy. So the political failure has been uniform across the political spectrum.

OK, having registered my factual disagreement with Krugman about the source of our anti-inflationary intransigence, I can now get to the main point. Here’s Krugman:

“[S]econd best” is an economic term of art. It comes from a classic 1956 paper by Lipsey and Lancaster, which showed that policies which might seem to distort markets may nonetheless help the economy if markets are already distorted by other factors. For example, suppose that a developing country’s poorly functioning capital markets are failing to channel savings into manufacturing, even though it’s a highly profitable sector. Then tariffs that protect manufacturing from foreign competition, raise profits, and therefore make more investment possible can improve economic welfare.

The problems with second best as a policy rationale are familiar. For one thing, it’s always better to address existing distortions directly, if you can — second best policies generally have undesirable side effects (e.g., protecting manufacturing from foreign competition discourages consumption of industrial goods, may reduce effective domestic competition, and so on). . . .

But here we are, with anything resembling first-best macroeconomic policy ruled out by political prejudice, and the distortions we’re trying to correct are huge — one global depression can ruin your whole day. So we have quantitative easing, which is of uncertain effectiveness, probably distorts financial markets at least a bit, and gets trashed all the time by people stressing its real or presumed faults; someone like me is then put in the position of having to defend a policy I would never have chosen if there seemed to be a viable alternative.

In a deep sense, I think the same thing is involved in trying to come up with less terrible policies in the euro area. The deal that Greece and its creditors should have reached — large-scale debt relief, primary surpluses kept small and not ramped up over time — is a far cry from what Greece should and probably would have done if it still had the drachma: big devaluation now. The only way to defend the kind of thing that was actually on the table was as the least-worst option given that the right response was ruled out.

That’s one example of a second-best problem, but it’s only one of a variety of problems, and not, it seems to me, the most macroeconomically interesting. So here’s the second-best problem that I want to discuss: given one distortion (i.e., a departure from one of the conditions for Pareto-optimality), reaching a second-best sub-optimum requires violating other – likely all the other – conditions for reaching the first-best (Pareto) optimum. The strategy for getting to the second-best suboptimum cannot be to achieve as many of the conditions for reaching the first-best optimum as possible; the conditions for reaching the second-best optimum are in general totally different from the conditions for reaching the first-best optimum.

So what’s the deeper macroeconomic significance of the second-best principle?

I would put it this way. Suppose there’s a pre-existing macroeconomic equilibrium, all necessary optimality conditions between marginal rates of substitution in production and consumption and relative prices being satisfied. Let the initial equilibrium be subjected to a macoreconomic disturbance. The disturbance will immediately affect a range — possibly all — of the individual markets, and all optimality conditions will change, so that no market will be unaffected when a new optimum is realized. But while optimality for the system as a whole requires that prices adjust in such a way that the optimality conditions are satisfied in all markets simultaneously, each price adjustment that actually occurs is a response to the conditions in a single market – the relationship between amounts demanded and supplied at the existing price. Each price adjustment being a response to a supply-demand imbalance in an individual market, there is no theory to explain how a process of price adjustment in real time will ever restore an equilibrium in which all optimality conditions are simultaneously satisfied.

Invoking a general Smithian invisible-hand theorem won’t work, because, in this context, the invisible-hand theorem tells us only that if an equilibrium price vector were reached, the system would be in an optimal state of rest with no tendency to change. The invisible-hand theorem provides no account of how the equilibrium price vector is discovered by any price-adjustment process in real time. (And even tatonnement, a non-real-time process, is not guaranteed to work as shown by the Sonnenschein-Mantel-Debreu Theorem). With price adjustment in each market entirely governed by the demand-supply imbalance in that market, market prices determined in individual markets need not ensure that all markets clear simultaneously or satisfy the optimality conditions.

Now it’s true that we have a simple theory of price adjustment for single markets: prices rise if there’s an excess demand and fall if there’s an excess supply. If demand and supply curves have normal slopes, the simple price adjustment rule moves the price toward equilibrium. But that partial-equilibriuim story is contingent on the implicit assumption that all other markets are in equilibrium. When all markets are in disequilibrium, moving toward equilibrium in one market will have repercussions on other markets, and the simple story of how price adjustment in response to a disequilibrium restores equilibrium breaks down, because market conditions in every market depend on market conditions in every other market. So unless all markets arrive at equilibrium simultaneously, there’s no guarantee that equilibrium will obtain in any of the markets. Disequilibrium in any market can mean disequilibrium in every market. And if a single market is out of kilter, the second-best, suboptimal solution for the system is totally different from the first-best solution for all markets.

In the standard microeconomics we are taught in econ 1 and econ 101, all these complications are assumed away by restricting the analysis of price adjustment to a single market. In other words, as I have pointed out in a number of previous posts (here and here), standard microeconomics is built on macroeconomic foundations, and the currently fashionable demand for macroeconomics to be microfounded turns out to be based on question-begging circular reasoning. Partial equilibrium is a wonderful pedagogical device, and it is an essential tool in applied microeconomics, but its limitations are often misunderstood or ignored.

An early macroeconomic application of the theory of second is the statement by the quintessentially orthodox pre-Keynesian Cambridge economist Frederick Lavington who wrote in his book The Trade Cycle “the inactivity of all is the cause of the inactivity of each.” Each successive departure from the conditions for second-, third-, fourth-, and eventually nth-best sub-optima has additional negative feedback effects on the rest of the economy, moving it further and further away from a Pareto-optimal equilibrium with maximum output and full employment. The fewer people that are employed, the more difficult it becomes for anyone to find employment.

This insight was actually admirably, if inexactly, expressed by Say’s Law: supply creates its own demand. The cause of the cumulative contraction of output in a depression is not, as was often suggested, that too much output had been produced, but a breakdown of coordination in which disequilibrium spreads in epidemic fashion from market to market, leaving individual transactors unable to compensate by altering the terms on which they are prepared to supply goods and services. The idea that a partial-equilibrium response, a fall in money wages, can by itself remedy a general-disequilibrium disorder is untenable. Keynes and the Keynesians were therefore completely wrong to accuse Say of committing a fallacy in diagnosing the cause of depressions. The only fallacy lay in the assumption that market adjustments would automatically ensure the restoration of something resembling full-employment equilibrium.


About Me

David Glasner
Washington, DC

I am an economist in the Washington DC area. My research and writing has been mostly on monetary economics and policy and the history of economics. In my book Free Banking and Monetary Reform, I argued for a non-Monetarist non-Keynesian approach to monetary policy, based on a theory of a competitive supply of money. Over the years, I have become increasingly impressed by the similarities between my approach and that of R. G. Hawtrey and hope to bring Hawtrey's unduly neglected contributions to the attention of a wider audience.

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 1,389 other followers

Follow Uneasy Money on WordPress.com