The 2017 History of Economics Society Conference in Toronto

I arrived in Toronto last Thursday for the History of Economics Society Meeting at the University of Toronto (Trinity College to be exact) to give talks on Friday about two papers, one of which (“Hayek and Three Equilibrium Concepts: Sequential, Temporary and Rational Expectations”) I have been posting over the past few weeks on this blog (here, here, here, here, and here). I want to thank those of you who have posted your comments, which have been very helpful, and apologize for not responding to the more recent comments. The other paper about which I gave a talk was based on a post from three of years ago (“Real and Pseudo Gold Standards: Did Friedman Know the Difference?”) on which one of the sections of that paper was based.

Here I am talking about Friedman.

Here are the abstracts of the two papers:

“Hayek and Three Equilibrium Concepts: Sequential, Temporary, and Rational Expectations”

Almost 40 years ago, Murray Milgate (1979) drew attention to the neglected contribution of F. A. Hayek to the concept of intertemporal equilibrium, which had previously been associated with Erik Lindahl and J. R. Hicks. Milgate showed that although Lindahl had developed the concept of intertemporal equilibrium independently, Hayek’s original 1928 contribution was published before Lindahl’s and that, curiously, Hicks in Value and Capital had credited Lindahl with having developed the concept despite having been Hayek’s colleague at LSE in the early 1930s and having previously credited Hayek for the idea of intertemporal equilibrium. Aside from Milgate’s contribution, few developments of the idea of intertemporal equilibrium have adequately credited Hayek’s contribution. This paper attempts to compare three important subsequent developments of that idea with Hayek’s 1937 refinement of the key idea of his 1928 paper. In non-chronological order, the three developments of interest are: 1) Radner’s model of sequential equilibrium with incomplete markets as an alternative to the Arrow-Debreu-McKenzie model of full equilibrium with complete markets; 2) Hicks’s temporary equilibrium model, and 3) the Muth-Lucas rational expectations model. While Hayek’s 1937 treatment most closely resembles Radner’s sequential equilibrium model, which Radner, echoing Hayek, describes as an equilibrium of plans, prices, and price expectations, Hicks’s temporary equilibrium model seems to be the natural development of Hayek’s approach. The Muth-Lucas rational-expectations model, however, develops the concept of intertemporal equilibrium in a way that runs counter to the fundamental Hayekian insight about the nature of intertemporal equilibrium

“Milton Friedman and the Gold Standard”

Milton Friedman discussed the gold standard in a number of works. His two main discussions of the gold standard appear in a 1951 paper on commodity-reserve currencies and in a 1961 paper on real and pseudo gold standards. In the 1951 paper, he distinguished between a gold standard in which only gold or warehouse certificates to equivalent amounts of gold circulated as a medium of exchange and one in which mere fiduciary claims to gold also circulated as media of exchange. Friedman called the former a strict gold standard and the latter as a partial gold standard. In the later paper, he distinguished between a gold standard in which gold is used as money, and a gold standard in which the government merely fixes the price of gold, dismissing the latter as a “pseudo” gold standard. In this paper, I first discuss the origin for the real/partial distinction, an analytical error, derived from David Hume via the nineteenth-century Currency School, about the incentives of banks to overissue convertible claims to base money, which inspired the Chicago plan for 100-percent reserve banking. I then discuss the real/pseudo distinction and argue that it was primarily motivated by the ideological objective of persuading libertarian and classical-liberal supporters of the gold standard to support a fiat standard supplemented by the k-percent quantity rule that Friedman was about to propose.

And here is my concluding section from the Friedman paper:

Milton Friedman’s view of the gold standard was derived from his mentors at the University Chicago, an inheritance that, in a different context, he misleadingly described as the Chicago oral tradition. The Chicago view of the gold standard was, in turn, derived from the English Currency School of the mid-nineteenth century, which successfully promoted the enactment of the Bank Charter Act of 1844, imposing a 100-percent marginal reserve requirement on the banknotes issued by the Bank of England, and served as a model for the Chicago Plan for 100-percent-reserve banking. The Currency School, in turn, based its proposals for reform on the price-specie-flow analysis of David Hume (1742).

The pure quantity-theoretic lineage of Friedman’s views of the gold standard and the intellectual debt that he owed to the Currency School and the Bank Charter Act disposed him to view the gold standard as nothing more than a mechanism for limiting the quantity of money. If the really compelling purpose and justification of the gold standard was to provide a limitation on the capacity of a government or a monetary authority to increase the quantity of money, then there was nothing special or exceptional about the gold standard.

I have no interest in exploring the reasons why supporters of, and true believers in, the gold standard feel a strong ideological or emotional attachment to that institution, and even if I had such an interest, this would not be the place to enter into such an exploration, but I conjecture that the sources of that attachment to the gold standard go deeper than merely to provide a constraint on the power of the government to increase the quantity of money.

But from Friedman’s quantity-theoretical perspective, if the primary virtue of the gold standard was that it served to limit the ability of the government to increase the quantity of money, if another institution could perform that service, it would serve just as well as the gold standard. The lesson that Friedman took from the efforts of the Currency School to enact the Bank Charter Act was that the gold standard, on its own, did not provide a sufficient constraint on the ability of private banks to increase the quantity of money. Otherwise, the 100-percent marginal reserve requirement of the Bank Charter Act would have been unnecessary.

Now if the gold standard could not function well without additional constraints on the quantity of money, then obviously the constraint on the quantity of money that really matters is not the gold standard itself, but the 100-percent marginal reserve requirement imposed on the banking system. But if the relevant constraint on the quantity of money is the 100 percent marginal reserve requirement, then the gold standard is really just excess baggage.

That was the view of Henry Simons and the other authors of the Chicago Plan. For a long time, Friedman accepted the Chicago Plan as the best prescription for monetary stability, but at about the time that he was writing his paper on real and pseudo gold standards, Friedman was frcoming to position that a k-percent rule would be a superior alternative to the old Chicago Plan. His paper on Pseudo gold standards for the Mont Pelerin Society was his initial attempt to persuade his libertarian and classical-liberal friends and colleagues to reconsider their support for the gold standard and prepare the ground for the k-percent rule that he was about to offer. But in his ideological enthusiasm he, in effect, denied the reality of the historical gold standard.

Aside from the getting to talk about my papers, the other highlights of the HES meeting for me included the opportunity to renew a very old acquaintance with the eminent Samuel Hollander whom I met about 35 years ago at the first History of Economics Society meeting that I ever attended and making the acquaintance for the first time with the eminent Deidre McCloskey who was at both of my sessions and with the eminent E. Roy Weintraub who has been doing important research on my illustrious cousin Abraham Wald, the first one to prove the existence of a competitive equilibrium almost 20 years before Arrow, Debreu and McKenzie came up with their proofs. Doing impressive and painstaking historical research Weintraub found a paper, long thought to have been lost in which Wald, using the fixed-point theorem that Arrow, Debreu and McKenzie had independently used in their proofs, gave a more general existence proof than he had provided in his published existence proofs, clearly establishing Wald’s priority over Arrow, Debreu and McKenzie in proving the existence of general equilibrium.

HT: Rebeca Betancourt

 

Hayek and Rational Expectations

In this, my final, installment on Hayek and intertemporal equilibrium, I want to focus on a particular kind of intertemporal equilibrium: rational-expectations equilibrium. In his discussions of intertemporal equilibrium, Roy Radner assigns a meaning to the term “rational-expectations equilibrium” very different from the meaning normally associated with that term. Radner describes a rational-expectations equilibrium as the equilibrium that results when some agents are able to make inferences about the beliefs held by other agents when observed prices differ from what they had expected prices to be. Agents attribute the differences between observed and expected prices to information held by agents better informed than themselves, and revise their own expectations accordingly in light of the information that would have justified the observed prices.

In the early 1950s, one very rational agent, Armen Alchian, was able to figure out what chemicals were being used in making the newly developed hydrogen bomb by identifying companies whose stock prices had risen too rapidly to be explained otherwise. Alchian, who spent almost his entire career at UCLA while also moonlighting at the nearby Rand Corporation, wrote a paper for Rand in which he listed the chemicals used in making the hydrogen bomb. When people at the Defense Department heard about the paper – the Rand Corporation was started as a think tank largely funded by the Department of Defense to do research that the Defense Department was interested in – they went to Alchian, confiscated and destroyed the paper. Joseph Newhard recently wrote a paper about this episode in the Journal of Corporate Finance. Here’s the abstract:

At RAND in 1954, Armen A. Alchian conducted the world’s first event study to infer the fuel material used in the manufacturing of the newly-developed hydrogen bomb. Successfully identifying lithium as the fusion fuel using only publicly available financial data, the paper was seen as a threat to national security and was immediately confiscated and destroyed. The bomb’s construction being secret at the time but having since been partially declassified, the nuclear tests of the early 1950s provide an opportunity to observe market efficiency through the dissemination of private information as it becomes public. I replicate Alchian’s event study of capital market reactions to the Operation Castle series of nuclear detonations in the Marshall Islands, beginning with the Bravo shot on March 1, 1954 at Bikini Atoll which remains the largest nuclear detonation in US history, confirming Alchian’s results. The Operation Castle tests pioneered the use of lithium deuteride dry fuel which paved the way for the development of high yield nuclear weapons deliverable by aircraft. I find significant upward movement in the price of Lithium Corp. relative to the other corporations and to DJIA in March 1954; within three weeks of Castle Bravo the stock was up 48% before settling down to a monthly return of 28% despite secrecy, scientific uncertainty, and public confusion surrounding the test; the company saw a return of 461% for the year.

Radner also showed that the ability of some agents to infer the information on which other agents are causing prices to differ from the prices that had been expected does not necessarily lead to an equilibrium. The process of revising expectations in light of observed prices may not converge on a shared set of expectations of the future based on commonly shared knowledge.

So rather than pursue Radner’s conception of rational expectations, I will focus here on the conventional understanding of “rational expectations” in modern macroeconomics, which is that the price expectations formed by the agents in a model should be consistent with what the model itself predicts that those future prices will be. In this very restricted sense, I believe rational expectations is a very important property that any model ought to have. It simply says that a model ought to have the property that if one assumes that the agents in a model expect the equilibrium predicted by the model, then, given those expectations, the solution of the model will turn out to be the equilibrium of the model. This property is a consistency and coherence property that any model, regardless of its substantive predictions, ought to have. If a model lacks this property, there is something wrong with the model.

But there is a huge difference between saying that a model should have the property that correct expectations are self-fulfilling and saying that agents are in fact capable of predicting the equilibrium of the model. Assuming the former does not entail the latter. What kind of crazy model would have the property that correct expectations are not self-fulfilling? I mean think about: a model in which correct expectations are not self-fulfilling is a nonsense model.

But demanding that a model not spout out jibberish is very different from insisting that the agents in the model necessarily have the capacity to predict what the equilibrium of the model will be. Rational expectations in the first sense is a minimal consistency property of an economic model; rational expectations in the latter sense is an empirical assertion about the real world. You can make such an assumption if you want, but you can’t claim that it is a property of the real world. Whether it is a property of the real world is a matter of fact, not a matter of methodological fiat. But methodological fiat is what rational expectations has become in macroeconomics.

In his 1937 paper on intertemporal equilibrium, Hayek was very clear that correct expectations are logically implied by the concept of an equilibrium of plans extending through time. But correct expectations are not a necessary, or even descriptively valid, characteristic of reality. Hayek also conceded that we don’t even have an explanation in theory of how correct expectations come into existence. He merely alluded to the empirical observation – perhaps not the most accurate description of empirical reality in 1937 – that there is an observed general tendency for markets to move toward equilibrium, implying that over time expectations do tend to become more accurate.

It is worth pointing out that when the idea of rational expectations was introduced by John Muth in the early 1960s, he did so in the context of partial-equilibrium models in which the rational expectation in the model was the rational expectation of the equilibrium price in a paraticular market. The motivation for Muth to introduce the idea of a rational expectation was idea of a cobweb cycle in which producers simply assume that the current price will remain at whatever level currently prevails. If there is a time lag between production, as in agricultural markets between the initial application of inputs and the final yield of output, it is easy to generate an alternating sequence of boom and bust, with current high prices inducing increased output in the following period, driving prices down, thereby inducing low output and high prices in the next period and so on.

Muth argued that rational producers would not respond to price signals in a way that led to consistently mistaken expectations, but would base their price expectations on more realistic expectations of what future prices would turn out to be. In his microeconomic work on rational expectations, Muth showed that the rational-expectation assumption was a better predictor of observed prices than the assumption of static expectations underlying the traditional cobweb-cycle model. So Muth’s rational-expectations assumption was based on a realistic conjecture of how real-world agents would actually form expectations. In that sense, Muth’s assumption was consistent with Hayek’s conjecture that there is an empirical tendency for markets to move toward equilibrium.

So while Muth’s introduction of the rational-expectations hypothesis was an empirically progressive theoretical innovation, extending rational-expectations into the domain of macroeconomics has not been empirically progressive, rational expectations models having consistently failed to generate better predictions than macro-models using other expectational assumptions. Instead, a rational-expectations axiom has been imposed as part of a spurious methodological demand that all macroeconomic models be “micro-founded.” But the deeper point – a point that Hayek understood better than perhaps anyone else — is that there is a huge difference in kind between forming rational expectations about a single market price and forming rational expectations about the vector of n prices on the basis of which agents are choosing or revising their optimal intertemporal consumption and production plans.

It is one thing to assume that agents have some expert knowledge about the course of future prices in the particular markets in which they participate regularly; it is another thing entirely to assume that they have knowledge sufficient to forecast the course of all future prices and in particular to understand the subtle interactions between prices in one market and the apparently unrelated prices in another market. The former kind of knowledge is knowledge that expert traders might be expected to have; the latter kind of knowledge is knowledge that would be possessed by no one but a nearly omniscient central planner, whose existence was shown by Hayek to be a practical impossibility.

Standard macroeconomic models are typically so highly aggregated that the extreme nature of the rational-expectations assumption is effectively suppressed. To treat all output as a single good (which involves treating the single output as both a consumption good and a productive asset generating a flow of productive services) effectively imposes the assumption that the only relative price that can ever change is the wage, so that all but one future relative prices are known in advance. That assumption effectively assumes away the problem of incorrect expectations except for two variables: the future price level and the future productivity of labor (owing to the productivity shocks so beloved of Real Business Cycle theorists). Having eliminated all complexity from their models, modern macroeconomists, purporting to solve micro-founded macromodels, simply assume that there is but one or at most two variables about which agents have to form their rational expectations.

Four score years since Hayek explained how challenging the notion of intertemporal equilibrium really is and the difficulties inherent in explaining any empirical tendency toward intertempral equilibrium, modern macroeconomics has succeeded in assuming all those difficulties out of existence. Many macroeconomists feel rather proud of what modern macroeconomics has achieved. I am not quite as impressed as they are.

Hayek and Temporary Equilibrium

In my three previous posts (here, here, and here) about intertemporal equilibrium, I have been emphasizing that the defining characteristic of an intertemporal equilibrium is that agents all share the same expectations of future prices – or at least the same expectations of those future prices on which they are basing their optimizing plans – over their planning horizons. At a given moment at which agents share the same expectations of future prices, the optimizing plans of the agents are consistent, because none of the agents would have any reason to change his optimal plan as long as price expectations do not change, or are not disappointed as a result of prices turning out to be different from what they had been expected to be.

The failure of expected prices to be fulfilled would therefore signify that the information available to agents in forming their expectations and choosing optimal plans conditional on their expectations had been superseded by newly obtained information. The arrival of new information can thus be viewed as a cause of disequilibrium as can any difference in information among agents. The relationship between information and equilibrium can be expressed as follows: differences in information or differences in how agents interpret information leads to disequilibrium, because those differences lead agents to form differing expectations of future prices.

Now the natural way to generalize the intertemporal equilibrium model is to allow for agents to have different expectations of future prices reflecting their differences in how they acquire, or in how they process, information. But if agents have different information, so that their expectations of future prices are not the same, the plans on which agents construct their subjectively optimal plans will be inconsistent and incapable of implementation without at least some revisions. But this generalization seems incompatible with the equilibrium of optimal plans, prices and price expectations described by Roy Radner, which I have identified as an updated version of Hayek’s concept of intertemporal equilibrium.

The question that I want to explore in this post is how to reconcile the absence of equilibrium of optimal plans, prices, and price expectations, with the intuitive notion of market clearing that we use to analyze asset markets and markets for current delivery. If markets for current delivery and for existing assets are in equilibrium in the sense that prices are adjusting in those markets to equate demand and supply in those markets, how can we understand the idea that  the optimizing plans that agents are seeking to implement are mutually inconsistent?

The classic attempt to explain this intermediate situation which partially is and partially is not an equilibrium, was made by J. R. Hicks in 1939 in Value and Capital when he coined the term “temporary equilibrium” to describe a situation in which current prices are adjusting to equilibrate supply and demand in current markets even though agents are basing their choices of optimal plans to implement over time on different expectations of what prices will be in the future. The divergence of the price expectations on the basis of which agents choose their optimal plans makes it inevitable that some or all of those expectations won’t be realized, and that some, or all, of those agents won’t be able to implement the optimal plans that they have chosen, without at least some revisions.

In Hayek’s early works on business-cycle theory, he argued that the correct approach to the analysis of business cycles must be analyzed as a deviation by the economy from its equilibrium path. The problem that he acknowledged with this approach was that the tools of equilibrium analysis could be used to analyze the nature of the equilibrium path of an economy, but could not easily be deployed to analyze how an economy performs once it deviates from its equilibrium path. Moreover, cyclical deviations from an equilibrium path tend not to be immediately self-correcting, but rather seem to be cumulative. Hayek attributed the tendency toward cumulative deviations from equilibrium to the lagged effects of monetary expansion which cause cumulative distortions in the capital structure of the economy that lead at first to an investment-driven expansion of output, income and employment and then later to cumulative contractions in output, income, and employment. But Hayek’s monetary analysis was never really integrated with the equilibrium analysis that he regarded as the essential foundation for a theory of business cycles, so the monetary analysis of the cycle remained largely distinct from, if not inconsistent with, the equilibrium analysis.

I would suggest that for Hayek the Hicksian temporary-equilibrium construct would have been the appropriate theoretical framework within which to formulate a monetary analysis consistent with equilibrium analysis. Although there are hints in the last part of The Pure Theory of Capital that Hayek was thinking along these lines, I don’t believe that he got very far, and he certainly gave no indication that he saw in the Hicksian method the analytical tool with which to weave the two threads of his analysis.

I will now try to explain how the temporary-equilibrium method makes it possible to understand  the conditions for a cumulative monetary disequilibrium. I make no attempt to outline a specifically Austrian or Hayekian theory of monetary disequilibrium, but perhaps others will find it worthwhile to do so.

As I mentioned in my previous post, agents understand that their price expectations may not be realized, and that their plans may have to be revised. Agents also recognize that, given the uncertainty underlying all expectations and plans, not all debt instruments (IOUs) are equally reliable. The general understanding that debt – promises to make future payments — must be evaluated and assessed makes it profitable for some agents to specialize in in debt assessment. Such specialists are known as financial intermediaries. And, as I also mentioned previously, the existence of financial intermediaries cannot be rationalized in the ADM model, because, all contracts being made in period zero, there can be no doubt that the equilibrium exchanges planned in period zero will be executed whenever and exactly as scheduled, so that everyone’s promise to pay in time zero is equally good and reliable.

For our purposes, a particular kind of financial intermediary — banks — are of primary interest. The role of a bank is to assess the quality of the IOUs offered by non-banks, and select from the IOUs offered to them those that are sufficiently reliable to be accepted by the bank. Once a prospective borrower’s IOU is accepted, the bank exchanges its own IOU for the non-bank’s IOU. No non-bank would accept a non-bank’s IOU, at least not on terms as favorable as those on which the bank offers in accepting an IOU. In return for the non-bank IOU, the bank credits the borrower with a corresponding amount of its own IOUs, which, because the bank promises to redeem its IOUs for the numeraire commodity on demand, is generally accepted at face value.

Thus, bank debt functions as a medium of exchange even as it enables non-bank agents to make current expenditures they could not have made otherwise if they can demonstrate to the bank that they are sufficiently likely to repay the loan in the future at agreed upon terms. Such borrowing and repayments are presumably similar to the borrowing and repayments that would occur in the ADM model unmediated by any financial intermediary. In assessing whether a prospective borrower will repay a loan, the bank makes two kinds of assessments. First, does the borrower have sufficient income-earning capacity to generate enough future income to make the promised repayments that the borrower would be committing himself to make? Second, should the borrower’s future income, for whatever reason, turn out to be insufficient to finance the promised repayments, does the borrower have collateral that would allow the bank to secure repayment from the collateral offered as security? In making both kinds of assessments the bank has to form an expectation about the future — the future income of the borrower and the future value of the collateral.

In a temporary-equilibrium context, the expectations of future prices held by agents are not the same, so the expectations of future prices of at least some agents will not be accurate, and some agents won’tbe able to execute their plans as intended. Agents that can’t execute their plans as intended are vulnerable if they have incurred future obligations based on their expectations of future prices that exceed their repayment capacity given the future prices that are actually realized. If they have sufficient wealth — i.e., if they have asset holdings of sufficient value — they may still be able to repay their obligations. However, in the process they may have to sell assets or reduce their own purchases, thereby reducing the income earned by other agents. Selling assets under pressure of obligations coming due is almost always associated with selling those assets at a significant loss, which is precisely why it usually preferable to finance current expenditure by borrowing funds and making repayments on a fixed schedule than to finance the expenditure by the sale of assets.

Now, in adjusting their plans when they observe that their price expectations are disappointed, agents may respond in two different ways. One type of adjustment is to increase sales or decrease purchases of particular goods and services that they had previously been planning to purchase or sell; such marginal adjustments do not fundamentally alter what agents are doing and are unlikely to seriously affect other agents. But it is also possible that disappointed expectations will cause some agents to conclude that their previous plans are no longer sustainable under the conditions in which they unexpectedly find themselves, so that they must scrap their old plans replacing them with completely new plans instead. In the latter case, the abandonment of plans that are no longer viable given disappointed expectations may cause other agents to conclude that the plans that they had expected to implement are no longer profitable and must be scrapped.

When agents whose price expectations have been disappointed respond with marginal adjustments in their existing plans rather than scrapping them and replacing them with new ones, a temporary equilibrium with disappointed expectations may still exist and that equilibrium may be reached through appropriate price adjustments in the markets for current delivery despite the divergent expectations of future prices held by agents. Operation of the price mechanism may still be able to achieve a reconciliation of revised but sub-optimal plans. The sub-optimal temporary equilibrium will be inferior to the allocation that would have resulted had agents all held correct expectations of future prices. Nevertheless, given a history of incorrect price expectations and misallocations of capital assets, labor, and other factors of production, a sub-optimal temporary equilibrium may be the best feasible outcome.

But here’s the problem. There is no guarantee that, when prices turn out to be very different from what they were expected to be, the excess demands of agents will adjust smoothly to changes in current prices. A plan that was optimal based on the expectation that the price of widgets would be $500 a unit may well be untenable at a price of $120 a unit. When realized prices are very different from what they had been expected to be, those price changes can lead to discontinuous adjustments, violating a basic assumption — the continuity of excess demand functions — necessary to prove the existence of an equilibrium. Once output prices reach some minimum threshold, the best response for some firms may be to shut down, the excess demand for the product produced by the firm becoming discontinuous at the that threshold price. The firms shutting down operations may be unable to repay loans they had obligated themselves to repay based on their disappointed price expectations. If ownership shares in firms forced to cease production are held by households that have predicated their consumption plans on prior borrowing and current repayment obligations, the ability of those households to fulfill their obligations may be compromised once those firms stop paying out the expected profit streams. Banks holding debts incurred by firms or households that borrowers cannot service may find that their own net worth is reduced sufficiently to make the banks’ own debt unreliable, potentially causing a breakdown in the payment system. Such effects are entirely consistent with a temporary-equilibrium model if actual prices turn out to be very different from what agents had expected and upon which they had constructed their future consumption and production plans.

Sufficiently large differences between expected and actual prices in a given period may result in discontinuities in excess demand functions once prices reach critical thresholds, thereby violating the standard continuity assumptions on which the existence of general equilibrium depends under the fixed-point theorems that are the lynchpin of modern existence proofs. C. J. Bliss made such an argument in a 1983 paper (“Consistent Temporary Equilibrium” in the volume Modern Macroeconomic Theory edited by  J. P. Fitoussi) in which he also suggested, as I did above, that the divergence of individual expectations implies that agents will not typically regard the debt issued by other agents as homogeneous. Bliss therefore posited the existence of a “Financier” who would subject the borrowing plans of prospective borrowers to an evaluation process to determine if the plan underlying the prospective loan sought by a borrower was likely to generate sufficient cash flow to enable the borrower to repay the loan. The role of the Financier is to ensure that the plans that firms choose are based on roughly similar expectations of future prices so that firms will not wind up acting on price expectations that must inevitably be disappointed.

I am unsure how to understand the function that Bliss’s Financier is supposed to perform. Presumably the Financier is meant as a kind of idealized companion to the Walrasian auctioneer rather than as a representation of an actual institution, but the resemblance between what the Financier is supposed to do and what bankers actually do is close enough to make it unclear to me why Bliss chose an obviously fictitious character to weed out business plans based on implausible price expectations rather than have the role filled by more realistic characters that do what their real-world counterparts are supposed to do. Perhaps Bliss’s implicit assumption is that real-world bankers do not constrain the expectations of prospective borrowers sufficiently to suggest that their evaluation of borrowers would increase the likelihood that a temporary equilibrium actually exists so that only an idealized central authority could impose sufficient consistency on the price expectations to make the existence of a temporary equilibrium likely.

But from the perspective of positive macroeconomic and business-cycle theory, explicitly introducing banks that simultaneously provide an economy with a medium of exchange – either based on convertibility into a real commodity or into a fiat base money issued by the monetary authority – while intermediating between ultimate borrowers and ultimate lenders seems to be a promising way of modeling a dynamic economy that sometimes may — and sometimes may not — function at or near a temporary equilibrium.

We observe economies operating in the real world that sometimes appear to be functioning, from a macroeconomic perspective, reasonably well with reasonably high employment, increasing per capita output and income, and reasonable price stability. At other times, these economies do not function well at all, with high unemployment and negative growth, sometimes with high rates of inflation or with deflation. Sometimes, these economies are beset with financial crises in which there is a general crisis of solvency, and even apparently solvent firms are unable to borrow. A macroeconomic model should be able to account in some way for the diversity of observed macroeconomic experience. The temporary equilibrium paradigm seems to offer a theoretical framework capable of accounting for this diversity of experience and for explaining at least in a very general way what accounts for the difference in outcomes: the degree of congruence between the price expectations of agents. When expectations are reasonably consistent, the economy is able to function at or near a temporary equilibrium which is likely to exist. When expectations are highly divergent, a temporary equilibrium may not exist, and even if it does, the economy may not be able to find its way toward the equilibrium. Price adjustments in current markets may be incapable of restoring equilibrium inasmuch as expectations of future prices must also adjust to equilibrate the economy, there being no market mechanism by which equilibrium price expectations can be adjusted or restored.

This, I think, is the insight underlying Axel Leijonhufvud’s idea of a corridor within which an economy tends to stay close to an equilibrium path. However if the economy drifts or is shocked away from its equilibrium time path, the stabilizing forces that tend to keep an economy within the corridor cease to operate at all or operate only weakly, so that the tendency for the economy to revert back to its equilibrium time path is either absent or disappointingly weak.

The temporary-equilibrium method, it seems to me, might have been a path that Hayek could have successfully taken in pursuing the goal he had set for himself early in his career: to reconcile equilibrium-analysis with a theory of business cycles. Why he ultimately chose not to take this path is a question that, for now at least, I will leave to others to try to answer.

Roy Radner and the Equilibrium of Plans, Prices and Price Expectations

In this post I want to discuss Roy Radner’s treatment of an equilibrium of plans, prices, and price expectations (EPPPE) and its relationship to Hayek’s conception of intertemporal equilibrium, of which Radner’s treatment is a technically more sophisticated version. Although I seen no evidence that Radner was directly influenced by Hayek’s work, I consider Radner’s conception of EPPPE to be a version of Hayek’s conception of intertemporal equilibrium, because it captures essential properties of Hayek’s conception of intertemporal equilibrium as a situation in which agents independently formulate their own optimizing plans based on the prices that they actually observe – their common knowledge – and on the future prices that they expect to observe over the course of their planning horizons. While currently observed prices are common knowledge – not necessarily a factual description of economic reality but not an entirely unreasonable simplifying assumption – the prices that individual agents expect to observe in the future are subjective knowledge based on whatever common or private knowledge individuals may have and whatever methods they may be using to form their expectations of the prices that will be observed in the future. An intertemporal equilibrium refers to a set of decentralized plans that are both a) optimal from the standpoint of every agent’s own objectives given their common knowledge of current prices and their subjective expectations of future prices and b) mutually consistent.

If an agent has chosen an optimal plan given current and expected future prices, that plan will not be changed unless the agent acquires new information that renders the existing plan sub-optimal relative to the new information. Otherwise, there would be no reason for the agent to deviate from an optimal plan. The new information that could cause an agent to change a formerly optimal plan would either affect the preferences of the agent, the technology available to the agent, or would somehow be reflected in current prices or in expected future prices. But it seems improbable that there could be a change in preferences or technology would not also be reflected in current or expected future prices. So absent a change in current or expected future prices, there would seem to be almost no likelihood that an agent would deviate from a plan that was optimal given current prices and the future prices expected by the agent.

The mutual consistency of the optimizing plans of independent agents therefore turns out to be equivalent to the condition that all agents observe the same current prices – their common knowledge – and have exactly the same forecasts of the future prices upon which they have relied in choosing their optimal plans. Even should their forecasts of future prices turn out to be wrong, at the moment before their forecasts of future prices were changed or disproved by observation, their plans were still mutually consistent relative to the information on which their plans had been chosen. The failure of the equilibrium to be maintained could be attributed to a change in information that meant that the formerly optimal plans were no longer optimal given the newly acquired information. But until the new information became available, the mutual consistency of optimal plans at that (fleeting) moment signified an equilibrium state. Thus, the defining characteristic of an intertemporal equilibrium in which current prices are common knowledge is that all agents share the same expectations of the future prices on which their optimal plans have been based.

There are fundamental differences between the Arrow-Debreu-McKenzie (ADM) equilibrium and the EPPPE. One difference worth mentioning is that, under the standard assumptions of the ADM model, the equilibrium is Pareto-optimal, and any Pareto-optimum allocation, by a suitable redistribution of initial endowments, could be achieved as a general equilibrium (two welfare theorems). These results do not generally hold for EPPPE, because, in contrast to the ADM model, it is possible for agents in EPPPE to acquire additional information over time, not only passively, but by investing resources in the production of information. Investing resources in the production of information can cause inefficiency in two ways: first, by creating non-convexities (owing to start-up costs in information gathering activities) that are inconsistent with the uniform competitive prices characteristic of the ADM equilibrium, and second, by creating incentives to devote resources to produce information whose value is derived from profits in trading with less well-informed agents. The latter source of inefficiency was discovered by Jack Hirshleifer in his classic 1971 paper, which I have written about in several previous posts (here, here, here, and here).

But the important feature of Radner’s EPPPE that I want to emphasize here — and what radically distinguishes it from the ADM equilibrium — is its fragility. Unlike the ADM equilibrium which is established once and forever at time zero of a model in which all production and consumption starts in period one, the EPPPE, even if it ever exists, is momentary, and is subject to unraveling whenever there is a change in the underlying information upon which current prices and expected future prices depend, and upon which agents, in choosing their optimal plans, rely. Time is not just, as it is in the ADM model, an appendage to the EPPPE, and, as a result, EPPPE can account for many phenomena, practices, and institutions that are left out of the ADM model.

The two differences that are most relevant in this context are the existence of stock markets in which shares of firms are traded based on expectations of the future net income streams associated with those firms, and the existence of a medium of exchange supplied by private financial intermediaries known as banks. In the ADM model in which all transactions are executed in time zero, in advance of all the actual consumption and production activities determined by those transactions, there would be no reason to hold, or to supply, a medium of exchange. The ADM equilibrium allows for agents to borrow or lend at equilibrium interest rates to optimize the time profiles of their consumption relative to their endowments and the time profiles of their earnings. Since all such transactions are consummated in time zero, and since, through some undefined process, the complete solvency and the integrity of all parties to all transactions is ascertained in time zero, the probability of a default on any loan contracted at time zero is zero. As a result, each agent faces a single intertemporal budget constraint at time zero over all periods from 1 to n. Walras’s Law therefore holds across all time periods for this intertemporal budget constraint, each agent transacting at the same prices in each period as every other agent does.

Once an equilibrium price vector is established in time zero, each agent knows that his optimal plan based on that price vector (which is the common knowledge of all agents) will be executed over time exactly as determined in time zero. There is no reason for any exchange of ownership shares in firms, the future income streams from each firm being known in advance.

The ADM equilibrium is a model of an economic process very different from Radner’s EPPPE, because in EPPPE, agents have no reason to assume that their current plans, even if they are momentarily both optimal and mutually consistent with the plans of all other agents, will remain optimal and consistent with the plans of all other agents. New information can arrive or be produced that will necessitate a revision in plans. Because even equilibrium plans are subject to revision, agents must take into account the solvency and credit worthiness of counterparties with whom they enter into transactions. The potentially imperfect credit-worthiness of at least some agents enables certain financial intermediaries (aka banks) to provide a service by offering to exchange their debt, which is widely considered to be more credit-worthy than the debt of ordinary agents, to agents seeking to borrow to finance purchases of either consumption or investment goods. Many agents seeking to borrow therefore prefer exchanging their debt for bank debt, bank debt being acceptable by other agents at face value. In addition, because the acquisition of new information is possible, there is a reason for agents to engage in speculative trades of commodities or assets. Such assets include ownership shares of firms, and agents may revise their valuations of those firms as they revise their expectations about future prices and their expectations about the revised plans of those firms in response to newly acquired information.

I will discuss the special role of banks at greater length in my next post on temporary equilibrium. But for now, I just want to underscore a key point: in the EPPE, unless all agents have the same expectations of future prices, Walras’s Law need not hold. The proof that Walras’s holds depends on the assumption that individual plans to buy and sell are based on the assumption that every agent buys or sells each commodity at the same price that every other transactor buys  or sells that commodity. But in the intertemporal context, in which only current, not future prices, are observed, plans for current and future prices are made based on expectations about future prices. If agents don’t share the same expectations about future prices, agents making plans for future purchases based on overly optimistic expectations about the prices at which they will be able to sell, may make commitments to buy in the future (or commitment to repay loans to finance purchases in the present) that they will be unable to discharge. Reneging on commitments to buy in the future or to repay obligations incurred in the present may rule out the existence of even a temporary equilibrium in the future.

Finally, let me add a word about Radner’s terminology. In his 1987 entry on “Uncertainty and General Equilibrium” for the New Palgrave Dictionary of Economics, (Here is a link to the revised version on line), Radner writes:

A trader’s expectations concern both future environmental events and future prices. Regarding expectations about future environmental events, there is no conceptual problem. According to the Expected Utility Hypothesis, each trader is characterized by a subjective probability measure on the set of complete histories of the environment. Since, by definition, the evolution of the environment is exogenous, a trader’s conditional probability of a future event, given the information to date, is well defined.

It is not so obvious how to proceed with regard to trader’s expectations about future prices. I shall contrast two possible approaches. In the first, which I shall call the perfect foresight approach, let us assume that the behaviour of traders is such as to determine, for each complete history of the environment, a unique corresponding sequence of price system[s]. . .

Thus, the perfect foresight approach implies that, in equilibrium, traders have common price expectation functions. These price expectation functions indicate, for each date-event pair, what the equilibrium price system would be in the corresponding market at that date event pair. . . . [I]t follows that, in equilibrium the traders would have strategies (plans) such that if these strategies were carried out, the markets would be cleared at each date-event pair. Call such plans consistent. A set of common price expectations and corresponding consistent plans is called an equilibrium of plans, prices, and price expectations.

My only problem with Radner’s formulation here is that he is defining his equilibrium concept in terms of the intrinsic capacity of the traders to predict prices rather the simple fact that traders form correct expectations. For purposes of the formal definition of EPPE, it is irrelevant whether traders predictions of future prices are correct because they are endowed with the correct model of the economy or because they are all lucky and randomly have happened simultaneously to form the same expectations of future prices. Radner also formulates an alternative version of his perfect-foresight approach in which agents don’t all share the same information. In such cases, it becomes possible for traders to make inferences about the environment by observing prices differ from what they had expected.

The situation in which traders enter the market with different non-price information presents an opportunity for agents to learn about the environment from prices, since current prices reflect, in a possibly complicated manner, the non-price information signals received by the various agents. To take an extreme example, the “inside information” of a trader in a securities market may lead him to bid up the price to a level higher than it otherwise would have been. . . . [A]n astute market observer might be able to infer that an insider has obtained some favourable information, just by careful observation of the price movement.

The ability to infer non-price information from otherwise inexplicable movements in prices leads Radner to define a concept of rational expectations equilibrium.

[E]conomic agents have the opportunity to revise their individual models in the light of observations and published data. Hence, there is a feedback from the true relationship to the individual models. An equilibrium of this system, in which the individual models are identical with the true model, is called a rational expectations equilibrium. This concept of equilibrium is more subtle, of course, that the ordinary concept of equilibrium of supply and demand. In a rational expectations equilibrium, not only are prices determined so as to equate supply and demand, but individual economic agents correctly perceive the true relationship between the non-price information received by the market participants and the resulting equilibrium market prices.

Though this discussion is very interesting from several theoretical angles, as an explanation of what is entailed by an economic equilibrium, it misses the key point, which is the one that Hayek identified in his 1928 and (especially) 1937 articles mentioned in my previous posts. An equilibrium corresponds to a situation in which all agents have identical expectations of the future prices upon which they are making optimal plans given the commonly observed current prices and the expected future prices. If all agents are indeed formulating optimal plans based on the information that they have at that moment, their plans will be mutually consistent and will be executable simultaneously without revision as long as the state of their knowledge at that instant does not change. How it happened that they arrived at identical expectations — by luck chance or supernatural powers of foresight — is irrelevant to that definition of equilibrium. Radner does acknowledge that, under the perfect-foresight approach, he is endowing economic agents with a wildly unrealistic powers of imagination and computational capacity, but from his exposition, I am unable to decide whether he grasped the subtle but crucial point about the irrelevance of an assumption about the capacities of agents to the definition of EPPPE.

Although it is capable of describing a richer set of institutions and behavior than is the Arrow-Debreu model, the perfect-foresight approach is contrary to the spirit of much of competitive market theory in that it postulates that individual traders must be able to forecast, in some sense, the equilibrium prices that will prevail in the future under all alternative states of the environment. . . .[T]his approach . . . seems to require of the traders a capacity for imagination and computation far beyond what is realistic. . . .

These last considerations lead us in a different direction, which I shall call the bounded rationality approach. . . . An example of the bounded-rationality approach is the theory of temporary equilibrium.

By eschewing any claims about the rationality of the agents or their computational powers, one can simply talk about whether agents do or do not have identical expectations of future prices and what the implications of those assumptions are. When expectations do agree, there is at least a momentary equilibrium of plans, prices and price expectations. When they don’t agree, the question becomes whether even a temporary equilibrium exists and what kind of dynamic process is implied by the divergence of expectations. That it seems to me would be a fruitful way forward for macroeconomics to follow. In my next post, I will discuss some of the characteristics and implications of a temporary-equilibrium approach to macroeconomics.

 

Correct Foresight, Perfect Foresight, and Intertemporal Equilibrium

In my previous post, I discussed Hayek’s path-breaking insight into the meaning of intertemporal equilibrium. His breakthrough was to see that an equilibrium can be understood not as a stationary state in which nothing changes, but as a state in which decentralized plans are both optimal from the point of view of the individuals formulating the plans and mutually consistent, so that the individually optimal plans, at least potentially, could be simultaneously executed. In the simple one-period model, the plans of individuals extending over a single-period time horizon are constrained by the necessary equality for each agent between the value of all planned purchases and the value of all planned sales in that period. A single-period or stationary equilibrium, if it exists, is characterized by a set of prices such that the optimal plans corresponding to that set of prices such that total amount demanded for each product equals the total amount supplied for each product. Thus, an equilibrium price vector has the property that every individual is choosing optimally based on the choice criteria and the constraints governing the decisions for each individual and that those individually optimal choices are mutually consistent, that mutual consistency being manifested in the equality of the total amount demanded and the total amount supplied of each product in that single period.

The problem posed by the concept of intertemporal equilibrium is how to generalize the single-period notion of an equilibrium as a vector of all the observed prices of goods and services actually traded in that single period into a multi-period concept in which the prices on which optimal choices depend include both the actual prices of goods traded in the current period as well as the prices of goods and services that agents plan to buy or sell only in some future time period. In an intertemporal context, the prices on the basis of which optimal plans are chosen cannot be just those prices at which transactions are being executed in the current period; the relevant set of prices must also include those prices at which transactions already being planned in the current period will be executed. Because even choices about transactions today may depend on the prices at which future transactions will take place, future prices can affect not only future demands and supplies they can also affect current demands and supplies.

But because prices in future periods are typically not observable by individuals in the present, it is not observed — but expected — future prices on the basis of which individual agents are making the optimal choices reflected in their intertemporal plans. And insofar as optimal plans depend on expected future prices, those optimal plans can be mutually consistent only if they are based on the same expected future prices, because if their choices are based on different expected future prices, then it is not possible that all expectations are realized. If the expectations of at least one agent, and probably of many agents, will be disappointed, implying that the plans of at least one and probably of many agents will not be optimized and will have to be revised.

The recognition that the mutual consistency of optimal plans requires individuals to accurately foresee the future prices upon which their optimal choices are based suggested that individual agents must be endowed with remarkable capacities to foresee the future. To assume that all individual agents would be endowed with the extraordinary ability to foresee correctly all the future prices relevant to their optimal choices about their intertemporal plans seemed an exceedingly unrealistic assumption on which to premise an economic model.

This dismissive attitude toward the concept of intertemporal equilibrium and the seemingly related assumption of “perfect foresight” necessary for an intertemporal equilibrium to exist was stridently expressed by Oskar Morgenstern in his famous 1935 article “Perfect Foresight and Economic Equilibrium.”

The impossibly high claims which are attributed to the intellectual efficiency of the economic subject immediately indicate that there are included in this equilibrium system not ordinary men, but rather, at least to one another, exactly equal demi-gods, in case the claim of complete foresight is fulfilled. If this is the case, there is, of course, nothing more to be done. If “full” or “perfect” foresight is to provide the basis of the theory of equilibrium in the strictly specified sense, and in the meaning obviously intended by the economic authors, then, a completely meaningless assumption is being considered. If limitations are introduced in such a way that the perfection of foresight is not reached, then these limitations are to be stated very precisely. They would have to be so narrowly drawn that the fundamental aim of producing ostensibly full rationality of the system by means of high, de facto unlimited, foresight, would be lost. For the theoretical economist, there is no way out of this dilemma. ln this discussion, “full” and “perfect” foresight are not only used synonymously, but both are employed, moreover, in the essentialIy more exact sense of limitlessness. This expression would have to be preferred because with the words “perfect” or “imperfect”, there arise superficial valuations which play no role here at all.

Morgenstern then went on to make an even more powerful attack on the idea of perfect foresight: that the idea is itself self-contradictory. Interestingly, he did so by positing an example that would figure in Morgenstern’s later development of game theory with his collaborator John von Neumann (and, as we now know, with his research assistant who in fact was his mathematical guide and mentor, Abraham Wald, fcredited as a co-author of The Theory of Games and Economic Behavior).

Sherlock Holmes, pursued by his opponent, Moriarity, leaves London for Dover. The train stops at a station on the way, and he alights there rather than traveling on to Dover. He has seen Moriarity at the railway station, recognizes that he is very clever and expects that Moriarity will take a faster special train in order to catch him in Dover. Holmes’ anticipation turns out to be correct. But what if Moriarity had been still more clever, had estimated Holmes’ mental abilities better and had foreseen his actions accordingly? Then, obviously, he would have traveled to the intermediate station. Holmes, again, would have had to calculate that, and he himself would have decided to go on to Dover. Whereupon, Moriarity would again have “reacted” differently. Because of so much thinking they might not have been able to act at all or the intellectually weaker of the two would have surrendered to the other in the Victoria Station, since the whole flight would have become unnecessary. Examples of this kind can be drawn from everywhere. However, chess, strategy, etc. presuppose expert knowledge, which encumbers the example unnecessarily.

One may be easily convinced that here lies an insoluble paradox. And the situation is not improved, but, rather, greatly aggravated if we assume that more than two individuals-as, for example, is the case with exchange-are brought together into a position, which would correspond to the one brought forward here. Always, there is exhibited an endless chain of reciprocally conjectural reactions and counter-reactions. This chain can never be broken by an act of knowledge but always only through an arbitrary act-a resolution. This resolution, again, would have to be foreseen by the two or more persons concerned. The paradox still remains no matter how one attempts to twist or turn things around. Unlimited foresight and economic equilibrium are thus irreconcilable with one another. But can equilibrium really take place with a faulty, heterogeneous foresight, however, it may be disposed? This is the question which arises at once when an answer is sought. One can even say this: has foresight been truly introduced at all into the consideration of equilibrium, or, rather, does not the theorem of equilibrium generally stand in no proven connection with the assumptions about foresight, so that a false assumption is being considered?

As Carlo Zappia has shown, it was probably Morgenstern’s attack on the notion of intertemporal equilibrium and perfect foresight that led Hayek to his classic restatement of the idea in his 1937 paper “Economics and Knowledge.” The point that Hayek clarified in his 1937 version, but had not been clear in his earlier expositions of the concept, is that correct foresight is not an assumption from which the existence of an intertemporal equilibrium can be causally deduced; there is no assertion that a state of equilibrium is the result of correct foresight. Rather, correct foresight is the characteristic that defines what is meant when the term “intertemporal equilibrium” is used in economic theory. Morgenstern’s conceptual error was to mistake a tautological statement about what would have to be true if an intertemporal equilibrium were to obtain for a causal statement about what conditions would bring an intertemporal equilibrium into existence.

The idea of correct foresight does not attribute any special powers to the economic agents who might under hypothetical circumstances possess correct expectations of future prices. The term is not meant to be a description of an actual state of affairs, but a description of what would have to be true for a state of affairs to be an equilibrium state of affairs.

As an aside, I would simply mention that many years ago when I met Hayek and had the opportunity to ask him about his 1937 paper and his role in developing the concept of intertemporal equilibrium, he brought my attention to his 1928 paper in which he first described an intertemporal equilibrium as state of affairs in which agents had correct expectations about future prices. My recollection of that conversation is unfortunately rather vague, but I do remember that he expressed some regret for not having had the paper translated into English, which would have established his priority in articulating the intertemporal equilibrium concept. My recollection is that the reason he gave for not having had the paper translated into English was that there was something about the paper about which he felt dissatisfied, but I can no longer remember what it was that he said he was dissatisfied with. However, I would now be inclined to conjecture that he was dissatisfied with not having disambiguated, as he did in the 1937 paper, between correct foresight as a defining characteristic of what intertemporal equilibrium means versus perfect foresight as the cause that brings intertemporal equilibruim into existence.

It is also interesting to note that the subsequent development of game theory in which Morgenstern played a not insubstantial role, shows that under a probabilistic interpretation of the interaction between Holmes and Moriarity, there could be an optimal mixed strategy that would provide an equilibrium solution of repeated Holmes-Moriarity interactions. But if the interaction is treated as a single non-repeatable event with no mixed strategy available to either party, the correct interpretation of the interaction is certainly that there is no equilibrium solution to the interaction. If there is no equilibrium solution, then it is precisely the absence of an equilibrium solution that implies the impossibility of correct foresight, correct foresight and the existence of an equilibrium being logically equivalent concepts.

A Draft of my Paper on Rules versus Discretion Is Now Available on SSRN

My paper “Rules versus Discretion in Monetary Policy Historically Contemplated” which I spoke about last September at the Mercatus Center Conference on rules for a post-crisis world has been accepted by the Journal of Macroeconomics. I posted a draft of the concluding section of the paper on this blog several weeks ago. An abstract, and a complete draft, of the paper are available on the journal website, but only the abstract is ungated.

I have posted a draft of the paper on SSRN where it may now be downloaded. Here is the abstract of the paper.

Monetary-policy rules are attempts to cope with the implications of having a medium of exchange whose value exceeds its cost of production. Two classes of monetary rules can be identified: (1) price rules that target the value of money in terms of a real commodity, e.g., gold, or in terms of some index of prices, and (2) quantity rules that target the quantity of money in circulation. Historically, price rules, e.g. the gold standard, have predominated, but the Bank Charter Act of 1844 imposed a quantity rule as an adjunct to the gold standard, because the gold standard had performed unsatisfactorily after being restored in Britain at the close of the Napoleonic Wars. A quantity rule was not proposed independently of a price rule until Henry Simons proposed a constant money supply consisting of government-issued fiat currency and deposits issued by banks operating on a 100-percent reserve basis. Simons argued that such a plan would be ideal if it could be implemented because it would deprive the monetary authority of any discretionary decision-making power. Nevertheless, Simons concluded that such a plan was impractical and supported a price rule to stabilized the price level. Simons’s student Milton Friedman revived Simons’s argument against discretion and modified Simons plan for 100-percent reserve banking and a constant money supply into his k-percent rule for monetary growth. This paper examines the doctrinal and ideological origins and background that lay behind the rules versus discretion distinction.

Hayek and Intertemporal Equilibrium

I am starting to write a paper on Hayek and intertemporal equilibrium, and as I write it over the next couple of weeks, I am going to post sections of it on this blog. Comments from readers will be even more welcome than usual, and I will do my utmost to reply to comments, a goal that, I am sorry to say, I have not been living up to in my recent posts.

The idea of equilibrium is an essential concept in economics. It is an essential concept in other sciences as well, its meaning in economics is not the same as in other disciplines. The concept having originally been borrowed from physics, the meaning originally attached to it by economists corresponded to the notion of a system at rest, and it took a long time for economists to see that viewing an economy as a system at rest was not the only, or even the most useful, way of applying the equilibrium concept to economic phenomena.

What would it mean for an economic system to be at rest? The obvious answer was to say that prices and quantities would not change. If supply equals demand in every market, and if there no exogenous change introduced into the system, e.g., in population, technology, tastes, etc., it would seem that would be no reason for the prices paid and quantities produced to change in that system. But that view of an economic system was a very restrictive one, because such a large share of economic activity – savings and investment — is predicated on the assumption and expectation of change.

The model of a stationary economy at rest in which all economic activity simply repeats what has already happened before did not seem very satisfying or informative, but that was the view of equilibrium that originally took hold in economics. The idea of a stationary timeless equilibrium can be traced back to the classical economists, especially Ricardo and Mill who wrote about the long-run tendency of an economic system toward a stationary state. But it was the introduction by Jevons, Menger, Walras and their followers of the idea of optimizing decisions by rational consumers and producers that provided the key insight for a more robust and fruitful version of the equilibrium concept.

If each economic agent (household or business firm) is viewed as making optimal choices based on some scale of preferences subject to limitations or constraints imposed by their capacities, endowments, technology and the legal system, then the equilibrium of an economy must describe a state in which each agent, given his own subjective ranking of the feasible alternatives, is making a optimal decision, and those optimal decisions are consistent with those of all other agents. The optimal decisions of each agent must simultaneously be optimal from the point of view of that agent while also being consistent, or compatible, with the optimal decisions of every other agent. In other words, the decisions of all buyers of how much to purchase must be consistent with the decisions of all sellers of how much to sell.

The idea of an equilibrium as a set of independently conceived, mutually consistent optimal plans was latent in the earlier notions of equilibrium, but it could not be articulated until a concept of optimality had been defined. That concept was utility maximization and it was further extended to include the ideas of cost minimization and profit maximization. Once the idea of an optimal plan was worked out, the necessary conditions for the mutual consistency of optimal plans could be articulated as the necessary conditions for a general economic equilibrium. Once equilibrium was defined as the consistency of optimal plans, the path was clear to define an intertemporal equilibrium as the consistency of optimal plans extending over time. Because current goods and services and otherwise identical goods and services in the future could be treated as economically distinct goods and services, defining the conditions for an intertemporal equilibrium was formally almost equivalent to defining the conditions for a static, stationary equilibrium. Just as the conditions for a static equilibrium could be stated in terms of equalities between marginal rates of substitution of goods in consumption and in production to their corresponding price ratios, an intertemporal equilibrium could be stated in terms of equalities between the marginal rates of intertemporal substitution in consumption and in production and their corresponding intertemporal price ratios.

The only formal adjustment required in the necessary conditions for static equilibrium to be extended to intertemporal equilibrium was to recognize that, inasmuch as future prices (typically) are unobservable, and hence unknown to economic agents, the intertemporal price ratios cannot be ratios between actual current prices and actual future prices, but, instead, ratios between current prices and expected future prices. From this it followed that for optimal plans to be mutually consistent, all economic agents must have the same expectations of the future prices in terms of which their plans were optimized.

The concept of an intertemporal equilibrium was first presented in English by F. A. Hayek in his 1937 article “Economics and Knowledge.” But it was through J. R. Hicks’s Value and Capital published two years later in 1939 that the concept became more widely known and understood. In explaining and applying the concept of intertemporal equilibrium and introducing the derivative concept of a temporary equilibrium in which current markets clear, but individual expectations of future prices are not the same, Hicks did not claim originality, but instead of crediting Hayek for the concept, or even mentioning Hayek’s 1937 paper, Hicks credited the Swedish economist Erik Lindahl, who had published articles in the early 1930s in which he had articulated the concept. But although Lindahl had published his important work on intertemporal equilibrium before Hayek’s 1937 article, Hayek had already explained the concept in a 1928 article “Das intertemporale Gleichgewichtasystem der Priese und die Bewegungen des ‘Geltwertes.'” (English translation: “Intertemporal price equilibrium and movements in the value of money.“)

Having been a junior colleague of Hayek’s in the early 1930s when Hayek arrived at the London School of Economics, and having come very much under Hayek’s influence for a few years before moving in a different theoretical direction in the mid-1930s, Hicks was certainly aware of Hayek’s work on intertemporal equilibrium, so it has long been a puzzle to me why Hicks did not credit Hayek along with Lindahl for having developed the concept of intertemporal equilibrium. It might be worth pursuing that question, but I mention it now only as an aside, in the hope that someone else might find it interesting and worthwhile to try to find a solution to that puzzle. As a further aside, I will mention that Murray Milgate in a 1979 article “On the Origin of the Notion of ‘Intertemporal Equilibrium’” has previously tried to redress the failure to credit Hayek’s role in introducing the concept of intertemporal equilibrium into economic theory.

What I am going to discuss in here and in future posts are three distinct ways in which the concept of intertemporal equilibrium has been developed since Hayek’s early work – his 1928 and 1937 articles but also his 1941 discussion of intertemporal equilibrium in The Pure Theory of Capital. Of course, the best known development of the concept of intertemporal equilibrium is the Arrow-Debreu-McKenzie (ADM) general-equilibrium model. But although it can be thought of as a model of intertemporal equilibrium, the ADM model is set up in such a way that all economic decisions are taken before the clock even starts ticking; the transactions that are executed once the clock does start simply follow a pre-determined script. In the ADM model, the passage of time is a triviality, merely a way of recording the sequential order of the predetermined production and consumption activities. This feat is accomplished by assuming that all agents are present at time zero with their property endowments in hand and capable of transacting – but conditional on the determination of an equilibrium price vector that allows all optimal plans to be simultaneously executed over the entire duration of the model — in a complete set of markets (including state-contingent markets covering the entire range of contingent events that will unfold in the course of time whose outcomes could affect the wealth or well-being of any agent with the probabilities associated with every contingent event known in advance).

Just as identical goods in different physical locations or different time periods can be distinguished as different commodities that cn be purchased at different prices for delivery at specific times and places, identical goods can be distinguished under different states of the world (ice cream on July 4, 2017 in Washington DC at 2pm only if the temperature is greater than 90 degrees). Given the complete set of state-contingent markets and the known probabilities of the contingent events, an equilibrium price vector for the complete set of markets would give rise to optimal trades reallocating the risks associated with future contingent events and to an optimal allocation of resources over time. Although the ADM model is an intertemporal model only in a limited sense, it does provide an ideal benchmark describing the characteristics of a set of mutually consistent optimal plans.

The seminal work of Roy Radner in relaxing some of the extreme assumptions of the ADM model puts Hayek’s contribution to the understanding of the necessary conditions for an intertemporal equilibrium into proper perspective. At an informal level, Hayek was addressing the same kinds of problems that Radner analyzed with far more powerful analytical tools than were available to Hayek. But the were both concerned with a common problem: under what conditions could an economy with an incomplete set of markets be said to be in a state of intertemporal equilibrium? In an economy lacking the full set of forward and state contingent markets describing the ADM model, intertemporal equilibrium cannot predetermined before trading even begins, but must, if such an equilibrium obtains, unfold through the passage of time. Outcomes might be expected, but they would not be predetermined in advance. Echoing Hayek, though to my knowledge he does not refer to Hayek in his work, Radner describes his intertemporal equilibrium under uncertainty as an equilibrium of plans, prices, and price expectations. Even if it exists, the Radner equilibrium is not the same as the ADM equilibrium, because without a full set of markets, agents can’t fully hedge against, or insure, all the risks to which they are exposed. The distinction between ex ante and ex post is not eliminated in the Radner equilibrium, though it is eliminated in the ADM equilibrium.

Additionally, because all trades in the ADM model have been executed before “time” begins, it seems impossible to rationalize holding any asset whose only use is to serve as a medium of exchange. In his early writings on business cycles, e.g., Monetary Theory and the Trade Cycle, Hayek questioned whether it would be possible to rationalize the holding of money in the context of a model of full equilibrium, suggesting that monetary exchange, by severing the link between aggregate supply and aggregate demand characteristic of a barter economy as described by Say’s Law, was the source of systematic deviations from the intertemporal equilibrium corresponding to the solution of a system of Walrasian equations. Hayek suggested that progress in analyzing economic fluctuations would be possible only if the Walrasian equilibrium method could be somehow be extended to accommodate the existence of money, uncertainty, and other characteristics of the real world while maintaining the analytical discipline imposed by the equilibrium method and the optimization principle. It proved to be a task requiring resources that were beyond those at Hayek’s, or probably anyone else’s, disposal at the time. But it would be wrong to fault Hayek for having had to insight to perceive and frame a problem that was beyond his capacity to solve. What he may be criticized for is mistakenly believing that he he had in fact grasped the general outlines of a solution when in fact he had only perceived some aspects of the solution and offering seriously inappropriate policy recommendations based on that seriously incomplete understanding.

In Value and Capital, Hicks also expressed doubts whether it would be possible to analyze the economic fluctuations characterizing the business cycle using a model of pure intertemporal equilibrium. He proposed an alternative approach for analyzing fluctuations which he called the method of temporary equilibrium. The essence of the temporary-equilibrium method is to analyze the behavior of an economy under the assumption that all markets for current delivery clear (in some not entirely clear sense of the term “clear”) while understanding that demand and supply in current markets depend not only on current prices but also upon expected future prices, and that the failure of current prices to equal what they had been expected to be is a potential cause for the plans that economic agents are trying to execute to be modified and possibly abandoned. In the Pure Theory of Capital, Hayek discussed Hicks’s temporary-equilibrium method a possible method of achieving the modification in the Walrasian method that he himself had proposed in Monetary Theory and the Trade Cycle. But after a brief critical discussion of the method, he dismissed it for reasons that remain obscure. Hayek’s rejection of the temporary-equilibrium method seems in retrospect to have been one of Hayek’s worst theoretical — or perhaps, meta-theoretical — blunders.

Decades later, C. J. Bliss developed the concept of temporary equilibrium to show that temporary equilibrium method can rationalize both holding an asset purely for its services as a medium of exchange and the existence of financial intermediaries (private banks) that supply financial assets held exclusively to serve as a medium of exchange. In such a temporary-equilibrium model with financial intermediaries, it seems possible to model not only the existence of private suppliers of a medium of exchange, but also the conditions – in a very general sense — under which the system of financial intermediaries breaks down. The key variable of course is vectors of expected prices subject to which the plans of individual households, business firms, and financial intermediaries are optimized. The critical point that emerges from Bliss’s analysis is that there are sets of expected prices, which if held by agents, are inconsistent with the existence of even a temporary equilibrium. Thus price flexibility in current market cannot, in principle, result in even a temporary equilibrium, because there is no price vector of current price in markets for present delivery that solves the temporary-equilibrium system. Even perfect price flexibility doesn’t lead to equilibrium if the equilibrium does not exist. And the equilibrium cannot exist if price expectations are in some sense “too far out of whack.”

Expected prices are thus, necessarily, equilibrating variables. But there is no economic mechanism that tends to cause the adjustment of expected prices so that they are consistent with the existence of even a temporary equilibrium, much less a full equilibrium.

Unfortunately, modern macroeconomics continues to neglect the temporary-equilibrium method; instead macroeconomists have for the most part insisted on the adoption of the rational-expectations hypothesis, a hypothesis that elevates question-begging to the status of a fundamental axiom of rationality. The crucial error in the rational-expectations hypothesis was to misunderstand the role of the comparative-statics method developed by Samuelson in The Foundations of Economic Analysis. The role of the comparative-statics method is to isolate the pure theoretical effect of a parameter change under a ceteris-paribus assumption. Such an effect could be derived only by comparing two equilibria under the assumption of a locally unique and stable equilibrium before and after the parameter change. But the method of comparative statics is completely inappropriate to most macroeconomic problems which are precisely concerned with the failure of the economy to achieve, or even to approximate, the unique and stable equilibrium state posited by the comparative-statics method.

Moreover, the original empirical application of the rational-expectations hypothesis by Muth was in the context of the behavior of a single market in which the market was dominated by well-informed specialists who could be presumed to have well-founded expectations of future prices conditional on a relatively stable economic environment. Under conditions of macroeconomic instability, there is good reason to doubt that the accumulated knowledge and experience of market participants would enable agents to form accurate expectations of the future course of prices even in those markets about which they expert knowledge. Insofar as the rational expectations hypothesis has any claim to empirical relevance it is only in the context of stable market situations that can be assumed to be already operating in the neighborhood of an equilibrium. For the kinds of problems that macroeconomists are really trying to answer that assumption is neither relevant nor appropriate.

What’s so Great about Science? or, How I Learned to Stop Worrying and Love Metaphysics

A couple of weeks ago, a lot people in a lot of places marched for science. What struck me about those marches is that there is almost nobody out there that is openly and explicitly campaigning against science. There are, of course, a few flat-earthers who, if one looks for them very diligently, can be found. But does anyone — including the flat-earthers themselves – think that they are serious? There are also Creationists who believe that the earth was created and designed by a Supreme Being – usually along the lines of the Biblical account in the Book of Genesis. But Creationists don’t reject science in general, they reject a particular scientific theory, because they believe it to be untrue, and try to defend their beliefs with a variety of arguments couched in scientific terms. I don’t defend Creationist arguments, but just because someone makes a bad scientific argument, it doesn’t mean that the person making the argument is an opponent of science. To be sure, the reason that Creationists make bad arguments is that they hold a set of beliefs about how the world came to exist that aren’t based on science but on some religious or ideological belief system. But people come up with arguments all the time to justify beliefs for which they have no evidentiary or “scientific” basis.

I mean one of the two greatest scientists that ever lived criticized quantum mechanics, because he couldn’t accept that the world was not fully determined by the laws of nature, or, as he put it so pithily: “God does not play dice with the universe.” I understand that Einstein was not religious, and wasn’t making a religious argument, but he was basing his scientific view of what an acceptable theory should be on certain metaphysical predispositions that he held, and he was expressing his disinclination to accept a theory inconsistent with those predispositions. A scientific argument is judged on its merits, not on the motivations for advancing the argument. And I won’t even discuss the voluminous writings of the other one of the two greatest scientists who ever lived on alchemy and other occult topics.

Similarly, there are climate-change deniers who question the scientific basis for asserting that temperatures have been rising around the world, and that the increase in temperatures results from human activity that discharges greenhouse gasses into the atmosphere. Deniers of global warming may be biased and may be making bad scientific arguments, but the mere fact – and for purposes of this discussion I don’t dispute that it is a fact – that global warming is real and caused by human activity does not mean that to dispute those facts unmasks that person as an opponent of science. R. A. Fisher, the greatest mathematical statistician of the first half of the twentieth century, who developed most of the statistical techniques now used in experimental research, severely damaged his reputation by rejecting or dismissing evidence that smoking tobacco is a primary cause of cancer. Some critics accused Fisher of having been compromised by financial inducements from the tobacco industry, while others attribute his positions to his own smoking habits or anti-puritanical tendencies. In any event, Fisher’s arguments against a causal link between smoking tobacco and lung cancer are now viewed as an embarrassing stain on an otherwise illustrious career. But Fisher’s lapse of judgment, and perhaps of ethics, don’t justify accusing him of opposition to science. Climate-change deniers don’t reject science; they reject or disagree with the conclusions of most climate scientists. They may have lousy reasons for their views – either that the climate is not changing or that whatever change has occurred is unrelated to the human production of greenhouse gasses – but holding wrong or biased views doesn’t make someone an opponent of science.

I don’t say that there are no people who dislike science – I mean don’t like it because of what it stands for, not because they find it difficult or boring. Such people may be opposed to teaching science and to funding scientific research and don’t want scientific knowledge to influence public policy or the way people live. But, as far as I can tell, they have little influence. There is just no one out there that wants to outlaw scientific research, or trying to criminalize the teaching of science. They may not want to fund science, but they aren’t trying to ban it. In fact, I doubt that the prestige and authority of science has ever been higher than it is now. Certainly religion, especially organized religion, to which science was once subordinate if not subservient, no longer exercises anything near the authority that science now does.

The reason for this extended introduction into the topic that I really want to discuss is to provide some context for my belief that economists worry too much about whether economics is really a science. It was such a validation for economists when the Swedish Central Bank piggy-backed on the storied Nobel Prize to create its ersatz “Nobel Memorial Prize” for economic science. (I note with regret the recent passing of William Baumol, whose failure to receive the Nobel Prize in economics, like that of Armen Alchian, was in fact a deplorable failure of good judgment on the part of the Nobel Committee.) And the self-consciousness of economists about the possibly dubious status of economics as a science is a reflection of the exalted status of science in society. So naturally, if one is seeking to increase the prestige of his own occupation and of the intellectual discipline in which one does research, it helps enormously to be able to say: “oh, yes, I am an economist, and economics is a science, which means that I really am a scientist, just like those guys that win Nobel Prizes.” It also helps to be able to show that your scientific research involves a lot of mathematics, because scientists use math in their theories, sometimes a lot of math, which makes it hard for non-scientists to understand what scientists are doing. We economists also use math in our theories, sometimes a lot math, and that’s why it’s just as hard for non-economists to understand what we economists are doing as it is to understand what real scientists are doing. So we really are scientists, aren’t we?”

Where did this obsession with science come from? I think it’s fairly recent, but my sketchy knowledge of the history of science prevents me from getting too deeply into that discussion. But until relatively modern times, science was subsumed under the heading of philosophy — Greek for the love of wisdom. But philosophy is a very broad subject, so eventually that part of philosophy that was concerned with the world as it actually exists was called natural philosophy as opposed to say, ethical and moral philosophy. After the stunning achievements of Newton and his successors, and after Francis Bacon outlined an inductive method for achieving knowledge of the world, the disjunction between mere speculative thought and empirically based research, which was what science supposedly exemplifies, became increasingly sharp. And the inductive method seemed to be the right way to do science.

David Hume and Immanuel Kant struggled with limited success to make sense of induction, because a general proposition cannot be logically deduced from a set of observations, however numerous. Despite the logical problem of induction, early in the early twentieth century a philosophical movement based in Vienna called logical positivism arrived at the conclusion that not only is all scientific knowledge acquired inductively through sensory experience and observation, but no meaning can be attached to any statement unless the statement makes reference to something about which we have or could have sensory experience; to be meaningful a statement must be verified or at least verifiable, so that its truth could be either verified or refuted. Any reference to concepts that have no basis in sensory experience is simply meaningless, i.e., a form of nonsense. Thus, science became not just the epitome of valid, certain, reliable, verified knowledge, which is what people were led to believe by the stunning success of Newton’s theory, it became the exemplar of meaningful discourse. Unless our statements refer to some observable, verifiable object, we are talking nonsense. And in the first half of the twentieth century, logical positivism dominated academic philosophy, at least in the English speaking world, thereby exercising great influence over how economists thought about their own discipline and its scientific status.

Logical positivism was subjected to rigorous criticism by Karl Popper in his early work Logik der Forschung (English translation The Logic of Scientific Discovery). His central point was that scientific theories are less about what is or has been observed, but about what cannot be observed. The empirical content of a scientific proposition consists in the range of observations that the theory says are not possible. The more observations excluded by the theory the greater its empirical content. A theory that is consistent with any observation, has no empirical content. Thus, paradoxically, scientific theories, under the logical positivist doctrine, would have to be considered nonsensical, because they tell us what can’t be observed. And because it is always possible that an excluded observation – the black swan – which our scientific theory tells us can’t be observed, will be observed, scientific theories can never be definitively verified. If a scientific theory can’t verified, then according to the positivists’ own criterion, the theory is nonsense. Of course, this just shows that the positivist criterion of meaning was nonsensical, because obviously scientific theories are completely meaningful despite being unverifiable.

Popper therefore concluded that verification or verifiability can’t be a criterion of meaning. In its place he proposed the criterion of falsification (i.e., refutation, not misrepresentation), but falsification became a criterion not for distinguishing between what is meaningful and what is meaningless, but between science and metaphysics. There is no reason why metaphysical statements (statements lacking empirical content) cannot be perfectly meaningful; they just aren’t scientific. Popper was misinterpreted by many to have simply substituted falsifiability for verifiability as a criterion of meaning; that was a mistaken interpretation, which Popper explicitly rejected.

So, in using the term “meaningful theorems” to refer to potentially refutable propositions that can be derived from economic theory using the method of comparative statics, Paul Samuelson in his Foundations of Economic Analysis adopted the interpretation of Popper’s demarcation criterion between science and metaphysics as if it were a demarcation criterion between meaning and nonsense. I conjecture that Samuelson’s unfortunate lapse into the discredited verbal usage of logical positivism may have reinforced the unhealthy inclination of economists to feel the need to prove their scientific credentials in order to even engage in meaningful discourse.

While Popper certainly performed a valuable service in clearing up the positivist confusion about meaning, he adopted a very prescriptive methodology aimed at making scientific practice more scientific in the sense of exposing theories to, rather than immunizing them against, attempts at refutation, because, according to Popper, it is only if after our theories survive powerful attempts to show that they are false that we can have confidence that those theories may be truthful or at least come close to being truthful. In principle, Popper was not wrong in encouraging scientists to formulate theories that are empirically testable by specifying what kinds of observations would be inconsistent with their theories. But in practice, that advice has been difficult to follow, and not only because researchers try to avoid subjecting their pet theories to tests that might prove them wrong.

Although Popper often cited historical examples to support his view that science progresses through an ongoing process of theoretical conjecture and empirical refutation, historians of science have had no trouble finding instances in which scientists did not follow Popper’s methodological rules and continued to maintain theories even after they had been refuted by evidence or after other theories had been shown to generate more accurate predictions than their own theories. Popper parried this objection by saying that his methodological rules were not positive (i.e., descriptive of science), but normative (i.e., prescriptive of how to do good science). In other words, Popper’s scientific methodology was itself not empirically refutable and scientific, but empirically irrefutable and metaphysical. I point out the unscientific character of Popper’s methodology of science, not to criticize Popper, but to point out that Popper himself did not believe that science is itself the final authority and ultimate arbiter of scientific practice.

But the more important lesson from the critical discussions of Popper’s methodological rules seems to me to be that they are too rigid to accommodate all the considerations that are relevant to assessing scientific theories and deciding whether those theories should be discarded or, at least tentatively, maintained. And Popper’s methodological rules are especially ill-suited for economics and other disciplines in which the empirical implications of theories depend on a large number of jointly-maintained hypotheses, so that it is hard to identify which of several maintained hypotheses is responsible for the failure of a predicted outcome to match the observed outcome. That of course is the well-known ceteris paribus problem, and it requires a very capable practitioner to know when to apply the ceteris paribus condition and which variables to hold constants and which to allow to vary. Popper’s methodological rules tell us to reject a theory when its predictions are mistaken, and Popper regarded the ceteris paribus quite skeptically as an illegitimate immunizing stratagem. That describes a profound dilemma for economics. On the one hand, it is hard to imagine how economic theory could be applied without using the ceteris paribus qualification, on the other hand, the qualification diminishes empirical content of economic theory.

Empirical problems are amplified by the infirmities of the data that economists typically use to derive quantitative predictions from their models. The accuracy of the data is often questionable, and the relationships between the data and the theoretical concepts they are supposed to measure are often dubious. Moreover, the assumptions about the data-generating process (e.g., independent and identically distributed random variables, randomly selected observations, omitted explanatory variables are uncorrelated with the dependent variable) necessary for the classical statistical techniques to generate unbiased estimates of the theoretical coefficients are almost impossibly stringent. Econometricians are certainly well aware of these issues, and they have discovered methods of mitigating them, but the problems with the data routinely used by economists and the complicated issues involved in developing and applying techniques to cope with those problems make it very difficult to use statistical techniques to reach definitive conclusions about empirical questions.

Jeff Biddle, one of the leading contemporary historians of economics, has a wonderful paper (“Statistical Inference in Economics 1920-1965: Changes in Meaning and Practice”)– his 2016 presidential address to the History of Economics Society – discussing how the modern statistical techniques based on concepts and methods derived from probability theory gradually became the standard empirical and statistical techniques used by economists, even though many distinguished earlier researchers who were neither unaware of, nor unschooled in, the newer techniques believed them to be inappropriate for analyzing economic data. Here is the abstract of Biddle’s paper.

This paper reviews changes over time in the meaning that economists in the US attributed to the phrase “statistical inference”, as well as changes in how inference was conducted. Prior to WWII, leading statistical economists rejected probability theory as a source of measures and procedures to be used in statistical inference. Haavelmo and the econometricians associated with the early Cowles Commission developed an approach to statistical inference based on concepts and measures derived from probability theory, but the arguments they offered in defense of this approach were not always responsive to the concerns of earlier empirical economists that the data available to economists did not satisfy the assumptions required for such an approach. Despite this, after a period of about 25 years, a consensus developed that methods of inference derived from probability theory were an almost essential part of empirical research in economics. I close the paper with some speculation on possible reasons for this transformation in thinking about statistical inference.

I quote one passage from Biddle’s paper:

As I have noted, the leading statistical economists of the 1920s and 1930s were also unwilling to assume that any sample they might have was representative of the universe they cared about. This was particularly true of time series, and Haavelmo’s proposal to think of time series as a random selection of the output of a stable mechanism did not really address one of their concerns – that the structure of the “mechanism” could not be expected to remain stable for long periods of time. As Schultz pithily put it, “‘the universe’ of our time series does not ‘stay put’” (Schultz 1938, p. 215). Working commented that there was nothing in the theory of sampling that warranted our saying that “the conditions of covariance obtaining in the sample (would) hold true at any time in the future” (Advisory Committee 1928, p. 275). As I have already noted, Persons went further, arguing that treating a time series as a sample from which a future observation would be a random draw was not only inaccurate but ignored useful information about unusual circumstances surrounding various observations in the series, and the unusual circumstances likely to surround the future observations about which one wished to draw conclusions (Persons 1924, p. 7). And, the belief that samples were unlikely to be representative of the universe in which the economists had an interest applied to cross section data as well. The Cowles econometricians offered to little assuage these concerns except the hope that it would be possible to specify the equations describing the systematic part of the mechanism of interest in a way that captured the impact of factors that made for structural change in the case of time series, or factors that led cross section samples to be systematically different from the universe of interest.

It is not my purpose to argue that the economists who rejected the classical theory of inference had better arguments than the Cowles econometricians, or had a better approach to analyzing economic data given the nature of those data, the analytical tools available, and the potential for further development of those tools. I only wish to offer this account of the differences between the Cowles econometricians and the previously dominant professional opinion on appropriate methods of statistical inference as an example of a phenomenon that is not uncommon in the history of economics. Revolutions in economics, or “turns”, to use a currently more popular term, typically involve new concepts and analytical methods. But they also often involve a willingness to employ assumptions considered by most economists at the time to be too unrealistic, a willingness that arises because the assumptions allow progress to be made with the new concepts and methods. Obviously, in the decades after Haavelmo’s essay on the probability approach, there was a significant change in the list of assumptions about economic data that empirical economists were routinely willing to make in order to facilitate empirical research.

Let me now quote from a recent book (To Explain the World) by Steven Weinberg, perhaps – even though a movie about his life has not (yet) been made — the greatest living physicist:

Newton’s theory of gravitation made successful predictions for simple phenomena like planetary motion, but it could not give a quantitative account of more complicated phenomena, like the tides. We are in a similar position today with regard to the strong forces that hold quarks together inside the protons and neutrons inside the atomic nucleus, a theory known as quantum chromodynamics. This theory has been successful in accounting for certain processes at high energy, such as the production of various strongly interacting particles in the annihilation of energetic electrons and their antiparticles, and its successes convince us that the theory is correct. We cannot use the theory to calculate precise values for other things that we would like to explain, like the masses of the proton and neutron, because the calculations is too complicated. Here, as for Newton’s theory of the tides, the proper attitude is patience. Physical theories are validated when they give us the ability to calculate enough things that are sufficiently simple to allow reliable calculations, even if we can’t calculate everything that we might want to calculate.

So Weinberg is very much aware of the limits that even physics faces in making accurate predictions. Only a small subset (relative to the universe of physical phenomena) of simple effects can be calculated, but the capacity of physics to make very accurate predictions of simple phenomena gives us a measure of confidence that the theory would be reliable in making more complicated predictions if only we had the computing capacity to make those more complicated predictions. But in economics the set of simple predictions that can be accurately made is almost nil, because economics is inherently a theory a complex social phenomena, and simplifying the real world problems to which we apply the theory to allow testable predictions to be made is extremely difficult and hardly ever possible. Experimental economists try to create conditions in which this can be done in controlled settings, but whether these experimental results have much relevance for real-world applications is open to question.

The problematic relationship between economic theory and empirical evidence is deeply rooted in the nature of economic theory and the very complex nature of the phenomena that economic theory seek to explain. It is very difficult to isolate simple real-world events in which economic theories can be put to decisive empirical tests that allow us to put competing theories to decisive tests based on unambiguous observations that are either consistent with or contrary to the predictions generated by those theories. Under those circumstances, if we apply the Popperian criterion for demarcation between science and metaphysics to economics, it is not at all clear to me whether economics is more on the science side of the line than on the metaphysics side.

Certainly, there are refutable implications of economic theory that can be deduced, but these implications are often subject to qualification, so the refutable implications are often refutable only n principle, but not in practice. Many fastidious economic methodologists, notably Mark Blaug, voiced unhappiness about this state of affairs and blamed economists for not being more ruthless in applying Popperian test of empirical refutation to their theories. Surely Blaug had a point, but the infrequency of empirical refutation of theories in economics is, I think, less attributable to bad methodological practice on the part of economists than to the nature of the theories that economists work with and the inherent ambiguities of the empirical evidence with which those theories can be tested. We might as well just face up to the fact that, to a large extent, empirical evidence is simply not clear cut enough to force us to discard well-entrenched economic theories, because well-entrenched economic theories can be adjusted and reformulated in response to apparently contrary evidence in ways that allow those theories to live on to fight another day, theories typically having enough moving parts to allow them to be adjusted as needed to accommodate anomalous or inconvenient empirical evidence.

Popper’s somewhat disloyal disciple, Imre Lakatos, talked about scientific theories in the context of scientific research programs, a research program being an amalgam of related theories which share a common inner core of theoretical principles or axioms which are not subject to refutation. Lakatos called these deep axiomatic core of principles the hard core of the research program. The hard core defines the program so it is fundamentally fixed and not open to refutation. The empirical content of the research program is provided by a protective belt of specific theories that are subject to refutation and, when refuted, can be replaced as needed with alternative theories that are consistent with both the theoretical hard core and the empirical evidence. What determines the success of a scientific research program is whether it is progressive or degenerating. A progressive research program accumulates an increasingly dense, but evolving, protective belt of theories in response to new theoretical and empirical problems or puzzles that are generated within the research program to keep researchers busy and to attract into the program new researchers seeking problems to solve. In contrast, a degenerating research program is unable to find enough interesting new problems or puzzles to keep researchers busy much less attract new ones.

Despite its Popperian origins, the largely sociological Lakatosian account of how science evolves and progresses was hardly congenial to Popper’s sensibilities, because the success of a research program is not strictly determined by the process of conjecture and refutation envisioned by Popper. But the important point for me is that a Lakatosian research program can be progressive even if it is metaphysical and not scientific. What matters is that it offer opportunities for researchers to find and to solve or even just to talk about solving new problems, thereby attracting new researchers into the program.

It does appear that economics has for at least two centuries been a progressive research program. But it is not clear that is a really scientific research program, because the nature of economic theory is so flexible that it can be adapted as needed to explain almost any set of observations. Almost any observation can be set up and solved in terms of some sort of constrained optimization problem. What the task requires is sufficient ingenuity on the part of the theorist to formulate the problem in such a way that the desired outcome can be derived as the solution of a constrained optimization problem. The hard core of the research program is therefore never at risk, and the protective belt can always be modified as needed to generate the sort of solution that is compatible with the theoretical hard core. The scope for true refutation has thus been effectively narrowed to eliminate any real scope for refutation, leaving us with a progressive metaphysical research program.

I am not denying that it would be preferable if economics could be a truly scientific research program, but it is not clear to me how much can be done about it. The complexity of the phenomena, the multiplicity of the hypotheses required to explain the data, and the ambiguous and not fully reliable nature of most of the data that economists have available devilishly conspire to render Popperian falsificationism an illusory ideal in economics. That is not an excuse for cynicism, just a warning against unrealistic expectations about what economics can accomplish. And the last thing that I am suggesting is that we stop paying attention to the data that we have or stop trying to improve the quality of the data that we have to work with.

Rules vs. Discretion Historically Contemplated

Here is a new concluding section which I have just written for my paper “Rules versus Discretion in Monetary Policy: Historically Contemplated” which I spoke about last September at the Mercatus Confernce on Monetary Rules in a Post-Crisis World. I have been working a lot on the paper over the past month or so and I hope to post a draft soon on SSRN and it is now under review for publication. I apologize for having written very little in past month and for having failed to respond to any comments on my previous posts. I simply have been too busy with work and life to have any energy left for blogging. I look forward to being more involved in the blog over the next few months and expect to be posting some sections of a couple of papers I am going to be writing. But I’m offering no guarantees. It is gratifying to know that people are still visiting the blog and reading some of my old posts.

Although recognition of a need for some rule to govern the conduct of the monetary authority originated in the perceived incentive of the authority to opportunistically abuse its privileged position, the expectations of the public (including that small, but modestly influential, segment consisting of amateur and professional economists) about what monetary rules might actually accomplish have evolved and expanded over the course of the past two centuries. As Laidler (“Economic Ideas, the Monetary Order, and the Uneasy Case for Monetary Rules”) shows, that evolution has been driven by both the evolution of economic and monetary institutions and the evolution of economic and monetary doctrines about how those institutions work.

I distinguish between two types of rules: price rules and quantity rules. The simplest price rule involved setting the price of a commodity – usually gold or silver – in terms of a monetary unit whose supply was controlled by the monetary authority or defining a monetary unit as a specific quantity of a particular commodity. Under the classical gold standard, for example, the monetary authority stood ready to buy or sell gold on demand at legally determined price of gold in terms of the monetary unit. Thus, the fixed price of gold under the gold standard was originally thought to serve as both the policy target of the rule and the operational instrument for implementing the rule.

However, as monetary institutions and theories evolved, it became apparent that there were policy objectives other than simply maintaining the convertibility of the monetary unit into the standard commodity that required the attention of the monetary authority. The first attempt to impose an additional policy goal on a monetary authority was the Bank Charter Act of 1844 which specified a quantity target – the aggregate of banknotes in circulation in Britain – which the monetary authority — the Bank of England – was required to reach by following a simple mechanical rule. By imposing a 100-percent marginal gold-reserve requirement on the notes issued by the Bank of England, the Bank Charter Act made the quantity of banknotes issued by the Bank of England both the target of the quantity rule and the instrument by which the rule was implemented.

Owing to deficiencies in the monetary theory on the basis of which the Act was designed and to the evolution of British monetary practices and institution, the conceptual elegance of the Bank Charter Act was not matched by its efficacy in practice. But despite, or, more likely, because of, the ultimate failure of Bank Charter Act, the gold standard, surviving recurring financial crises in Great Britain in the middle third of the nineteenth century, was eventually adopted by many other countries in the 1870s, becoming the de facto international monetary system from the late 1870s until the start of World War I. Operation of the gold standard was defined by, and depended on, the observance of a single price rule in which the value of a currency was defined by its legal gold content, so that corresponding to each gold-standard currency, there was an official gold price at which the monetary authority was obligated to buy or sell gold on demand.

The value – the purchasing power — of gold was relatively stable in the 35 or so years of the gold standard era, but that stability could not survive the upheavals associated with World War I, and so the problem of reconstructing the postwar monetary system was what kind of monetary rule to adopt to govern the post-war economy. Was it enough merely to restore the old currency parities – perhaps adjusted for differences in the extent of wartime and postwar currency depreciation — that governed the classical gold standard, or was it necessary to take into account other factors, e.g., the purchasing power of gold, in restoring the gold standard? This basic conundrum was never satisfactorily answered, and the failure to do so undoubtedly was a contributing, and perhaps dominant, factor in the economic collapse that began at the end of 1929, ultimately leading to the abandonment of the gold standard.

Searching for a new monetary regime to replace the failed gold standard, but to some extent inspired by the Bank Charter Act of the previous century, Henry Simons and ten fellow University of Chicago economists devised a totally new monetary system based on 100-percent reserve banking. The original Chicago proposal for 100-percent reserve banking proposed a monetary rule for stabilizing the purchasing power of fiat money. The 100-percent banking proposal would give the monetary authority complete control over the quantity of money, thereby enhancing the power of the monetary authority to achieve its price-level target. The Chicago proposal was thus inspired by a desire to increase the likelihood that the monetary authority could successfully implement the desired price rule. The price level was the target, and the quantity of money was the instrument. But as long as private fractional-reserve banks remained in operation, the monetary authority would lack effective control over the instrument. That was the rationale for replacing fractional reserve banks with 100-percent reserve banks.

But Simons eventually decided in his paper (“Rules versus Authorities in Monetary Policy”) that a price-level target was undesirable in principle, because allowing the monetary authority to choose which price level to stabilize, thereby favoring some groups at the expense of others, would grant too much discretion to the monetary authority. Rejecting price-level stabilization as monetary rule, Simons concluded that the exercise of discretion could be avoided only if the quantity of money was the target as well as the instrument of a monetary rule. Simons’s ideal monetary rule was therefore to keep the quantity of money in the economy constant — forever. But having found the ideal rule, Simons immediately rejected it, because he realized that the reforms in the financial and monetary systems necessary to make such a rule viable over the long run would never be adopted. And so he reluctantly and unhappily reverted back to the price-level stabilization rule that he and his Chicago colleagues had proposed in 1933.

Simons’s student Milton Friedman continued to espouse his teacher’s opposition to discretion, and as late as 1959 (A Program for Monetary Stability) he continued to advocate 100-percent reserve banking. But in the early 1960s, he adopted his k-percent rule and gave up his support for 100-percent banking. But despite giving up on 100-percent banking, Friedman continued to argue that the k-percent rule was less discretionary than the gold standard or a price-level rule, because neither the gold standard nor a price-level rule eliminated the exercise of discretion by the monetary authority in its implementation of policy, failing to acknowledge that, under any of the definitions that he used (usually M1 and sometimes M2), the quantity of money was a target, not an instrument. Of course, Friedman did eventually abandon his k-percent rule, but that acknowledgment came at least a decade after almost everyone else had recognized its unsuitability as a guide for conducting monetary policy, let alone as a legally binding rule, and long after Friedman’s repeated predictions that rapid growth of the monetary aggregates in the 1980s presaged the return of near-double-digit inflation.

However, the work of Kydland and Prescott (“Rules Rather than Discretion: The Inconsistency of Optimal Plans”) on time inconsistency has provided an alternative basis on which argue against discretion: that the lack of commitment to a long-run policy would lead to self-defeating short-term attempts to deviate from the optimal long-term policy.[1]

It is now I think generally understood that a monetary authority has available to it four primary instruments in conducting monetary policy, the quantity of base money, the lending rate it charges to banks, the deposit rate it pays banks on reserves, and an exchange rate against some other currency or some asset. A variety of goals remain available as well, nominal goals like inflation, the price level, or nominal income, or even an index of stock prices, as well as real goals like real GDP and employment.

Ever since Friedman and Phelps independently argued that the long-run Phillips Curve is vertical, a consensus has developed that countercyclical monetary policy is basically ineffectual, because the effects of countercyclical policy will be anticipated so that the only long-run effect of countercyclical policy is to raise the average rate of inflation without affecting output and employment in the long run. Because the reasoning that generates this result is essentially that money is neutral in the long run, the reasoning is not as compelling as the professional consensus in its favor would suggest. The monetary neutrality result only applies under the very special assumptions of a comparative static exercise comparing an initial equilibrium with a final equilibrium. But the whole point of countercyclical policy is to speed the adjustment from a disequilbrium with high unemployment back to a low-unemployment equilibrium. A comparative-statics exercise provides no theoretical, much less empirical, support for the proposition that anticipated monetary policy cannot have real effects.

So the range of possible targets and the range of possible instruments now provide considerable latitude to supporters of monetary rules to recommend alternative monetary rules incorporating many different combinations of alternative instruments and alternative targets. As of now, we have arrived at few solid theoretical conclusions about the relative effectiveness of alternative rules and even less empirical evidence about their effectiveness. But at least we know that, to be viable, a monetary rule will almost certainly have to be expressed in terms of one or more targets while allowing the monetary authority at least some discretion to adjust its control over its chosen instruments in order to effectively achieve its target (McCallum 1987, 1988). That does not seem like a great deal of progress to have made in the two centuries since economists began puzzling over how to construct an appropriate rule to govern the behavior of the monetary authority, but it is progress nonetheless. And, if we are so inclined, we can at least take some comfort in knowing that earlier generations have left us a lot of room for improvement.

Footnote:

[1] Friedman in fact recognized the point in his writings, but he emphasized the dangers of allowing discretion in the choice of instruments rather than the time-inconsistency policy, because it was only former argument that provided a basis for preferring his quantity rule over price rules.

A Tale of Three Posts

Since I started blogging in July 2011, I have published 521 posts (not including this one). A number of my posts have achieved a fair amount of popularity, as measured by the number of views, which WordPress allows me to keep track of. Many, though not all, of my most widely viewed posts were mentioned by Paul Krugman in his blog. Whenever I noticed an unusually large uptick in the number of viewers visiting the blog, I usually found Krugman had linked to my post, causing a surge of viewers to my blog.

The most visitors I ever had in one day was on August 7, 2012. It was the day after I wrote a post mocking an op-ed in the Wall Street Journal by Arthur Laffer (“Arthur Laffer, Anti-Enlightenment Economist”) in which, based on some questionable data, and embarrassingly bad logic, Laffer maintained that countries that had adopted fiscal stimulus after the 2008-09 downturn had weaker recoveries than countries that had practiced fiscal austerity. This was not the first or last time that Krugman linked to a post of mine, but what made it special was that Krugman linked to it while he on vacation, so that for three days, everyone who visited Krugman’s blog found his post linking to my post, so that on August 7 alone, my post was viewed 7885 times, with 3004 viewing the post on August 8, 1591 on August 9, and 953 on August 10. In the entire month of August, the Laffer post was viewed 15,399 times. To this day, that post remains the most viewed post that I have ever written, having been viewed a total 17,604 times.

As you can see, the post has not maintained its popular appeal, over 87 percent of all views having occurred within three and a half weeks of its having been published. And there’s no reason why it should have retained its popularity. It was a well-written post, properly taking a moderately well-known right-wing economist to task for publishing a silly piece of ideological drivel in a once-great newspaper, but there was nothing especially profound or original about it. It was just the sort of post that Krugman loves to link to, and I was at the top of his blog for three days before he published his next post.

Exactly a year and a half later, February 6, 2014, I wrote another post (“Why Are Wages Sticky?“) that Krugman mentioned on his blog. I wasn’t mocking or attacking anyone, but suggesting what I think is an original theoretical explanation for why wages are more sticky than most other prices, while also reminding people that in the General Theory, Keynes actually tried to explain why wage stickiness was not an essential element of his theoretical argument for the existence of involuntary unemployment. Because it wasn’t as polemical as the earlier post, and because I didn’t have Krugman’s blog all to myself for three days, Krugman’s link did not generate anywhere near the traffic for this post that it did for the Laffer post. The day that Krugman linked to my post, February 7, it was viewed by 1034 viewers (333 of whom were referred by Krugman). Very good, but nowhere near the traffic I got a year and a half earlier. For the entire month of February, the post was viewed 2145 times. Again, that’s pretty good, but probably below average for a post to which Kruman posted a link. But the nice thing about the wage stickiness post is that although the traffic to that post dropped off over the next few months, the decline was not nearly as precipitous as dropoff in traffic to the Laffer post. During all of 2014, wage-stickiness post was viewed a total of 6622 times.

What I also noticed was that after traffic gradully dropped off in the months after February, traffic picked up again in September and again in October before dropping off slightly in December and January,  only to pick up again in February. That pattern, which has continued ever since, suggests to me that somehow econ students, on their own or perhaps at the suggestion of their professors, are looking up what I had to say about wage stickiness. Here is a WordPress table tracking monthly views of this post.

So unlike the Laffer post, the vast majority of the visits to the wage-stickiness post (almost 88%) have occurred since the month in which it was published. So for about two years I have been watching the visits to my wage-stickiness post gradually move up in the rankings of my all-time most viewed posts until I could announce that it had eclipsed the fluke Laffer post as my number one post. The price-stickiness post is now within less than fifty views of passing the Laffer post. Yes, I know it’s not a big deal, but I feel good about it.

But over the past six months, suddenly since October, a third post (“Gold Standard or Gold Exchange Standard: What’s the Difference?“), originally published on July 1, 2015, has been attracting a lot of traffic. When first published, it was moderately successful, drawing 569 visits on July 2, 2015, which is still the most visits it has received on any single day, mostly via links from Mark Toma’s blog and Brad DeLong’s blog. The post was not terribly original, but I think it did a nice job of describing that evolution of the gold standard from an almost accidental and peculiarly British, institution into a totem of late nineteenth-century international monetary orthodoxy, whose principal features remain till this day surprisingly obscure even to well trained and sophisticated monetary economists and financial experts.

And I also tried to show that the supposed differences between the pre-World-War I gold standard and the attempted and ultimately disastrous resurrection of the gold standard (GS 2.0) in the 1920s in the form of what was called a gold-exchange standard were really pretty trivial. So if the gold standard failed when it was reconstituted after World War I, the reason was not that what was tried was not the real thing. It was because of deeper systemic problems that had no direct connection to the nominal difference between the original gold standard and the gold exchange standard. I cconclluded the post with three lengthy quotations from J. M. Keynes’s first book on economics Indian Currency and Finance, which displayed an excellent understanding of the workings of the gold standard and the gold exchange standard, the latter having been the system by which India was linked to gold while under British control before World War I. Here is the WordPress table tracking monthly views of my post on the gold exchange standard.

The number of views this month alone is a staggering amount of traffic for any post — the second most views in a month for any post I have written. And what is more amazing is that the traffic has not been driven by links from other blogs, but has been driven, as best as I can tell, at least partially, by search engines.

The other amazing thing about the burst of traffic to this post is that most of the visitors seem to be coming from India. Over the past 30 days since February 28, this blog has been viewed 17,165 times. The most-often viewed post in that time period was my gold-exchange standard post, which was viewed 7385 times, i.e., over 40% of all views were of that one single post. In the past 30 days, my blog was viewed from India 6446 times while my blog was viewed from the United States only 4863 times. Over the entire history of this blog, about 50% of views have been from within the US. So India is clearly where it’s at now.

Now I know that the Indian monetary system was implicated in this post owing to my extended quotation from Keynes’s book, but that reference is largely incidental. So I am at a loss to explain why all these Indian visitors have been attracted to the blog, and why the attraction seems to be growing exponentially, though I suspect that traffic may have peaked over the last week.

At any rate here is how a WordPress table with my 11 most popular posts (as of today at 3:07 pm EDST).

So, as I write this it is not clear whether my hopes that my price-stickiness post will become my all-time most viewed post will ever come to pass, because my gold exchange standard post may very well pass it before it passes the Laffer post. Even so, over the very long run, I still have a feeling that the wage stickiness post will eventually come out on top. We shall see.

At any rate, if you have ever viewed either one of those posts in the past, I would be interested in hearing from you how you got to it.

PS I realized that, by identifying Paul Krugman’s blog as the blog from which many of my most popular posts have received the largest number of viewers, I inadvertently slighted Mark Thoma’s indispensible blog (Economistsview.typepad.com), which really is the heart and soul of the econ blogosphere. I just checked, and I see that since my blog started in 2011, over 79,000 viewers have visited my blog via Mark’s blog compared to 53,000 viewers who have visited via Krugman. And I daresay that when Krugman has linked to one of my posts, it’s probably only after he followed Thoma’s link to my blog, so I’m doubly indebted to Mark.


About Me

David Glasner
Washington, DC

I am an economist in the Washington DC area. My research and writing has been mostly on monetary economics and policy and the history of economics. In my book Free Banking and Monetary Reform, I argued for a non-Monetarist non-Keynesian approach to monetary policy, based on a theory of a competitive supply of money. Over the years, I have become increasingly impressed by the similarities between my approach and that of R. G. Hawtrey and hope to bring Hawtrey's unduly neglected contributions to the attention of a wider audience.

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 1,391 other followers

Follow Uneasy Money on WordPress.com