It’s been over three years since I posted the fourth of my four previous installments in this series about Earl Thompson’s unpublished paper “A Reformulation of Macroeconomic Theory,” Thompson’s strictly neoclassical alternative to the standard Keynesian IS-LM model. Given the long hiatus, a short recapitulation seems in order.
The first installment was an introduction summarizing Thompson’s two main criticisms of the Keynesian model: 1) the disconnect between the standard neoclassical marginal productivity theory of production and factor pricing and the Keynesian assertion that labor receives a wage equal to its marginal product, thereby implying the existence of a second scarce factor of production (capital), but with the market for capital services replaced in the IS-LM model by the Keynesian expenditure functions, creating a potential inconsistency between the IS-LM model and a deep property of neoclassical theory; 2) the market for capital services having been excluded from the IS-LM model, the model lacks a variable that equilibrates the choice between holding money or real assets, so that the Keynesian investment function is incompletely specified, the Keynesian equilibrium condition for spending – equality between savings and investment – taking no account of the incentive for capital accumulation or the relationship, explicitly discussed by Keynes, between current investment and the (expected) future price level. Excluding the dependence of the equilibrium rate of spending on (expected) inflation from the IS-LM model renders the model logically incomplete.
The second installment was a discussion of the Hicksian temporary-equilibrium method used by Thompson to rationalize the existence of involuntary unemployment. For Thompson involuntary unemployment means unemployment caused by overly optimistic expectations by workers of wage offers, leading them to mistakenly set reservation wages too high. The key idea of advantage of the temporary-equilibrium method is that it reconciles the convention of allowing a market-clearing price to equilibrate supply and demand with the phenomenon of substantial involuntary unemployment in business-cycle downturns. Because workers have an incentive to withhold their services in order to engage in further job search or job training or leisure, their actual short-run supply of labor services in a given time period is highly elastic at the expected wage. If wage offers are below expectations, workers (mistakenly = involuntarily) choose unemployment, but given those mistaken expectations, the labor market is cleared with the observed wage equilibrating the demand for labor services and supply of labor services. There are clearly problems with this way of modeling the labor market, but it does provide an analytical technique that can account for cyclical fluctuations in unemployment within a standard microeconomic framework.
In the third installment, I showed how Thompson derived his FF curve, representing combinations of price levels and interest rates consistent with (temporary) equilibrium in both factor markets (labor services and capital services) and two versions of the LM curve, representing price levels and interest rates consistent with equilibrium in the money market. The two versions of the LM curve (analogous, but not identical, to the Keynesian LM curve) correspond to different monetary regimes. In what Thompson called the classical case, the price level is fixed by convertibility of output into cash at a fixed exchange rate, with money being supplied by a competitive banking system paying competitive interest on cash balances. The LM curve in this case is vertical at the fixed price level, with any nominal rate of interest being consistent with equilibrium in the money market, inasmuch as the amount of money demanded depends not on the nominal interest rate, but on the difference between the nominal interest rate and the competitively determined interest rate paid on cash. In the modern case, cash is non-interest bearing and supplied monopolistically by the monetary authority, so the LM curve is upward-sloping, with the cost of holding cash rising with the rate of interest, thereby reducing the amount of money demanded and increasing the price level for a given quantity of money supplied by the monetary authority. The solution of the model corresponds to the intersection of the FF and LM curves. For the classical case, the intersection is unique, but in the modern case since both curves are upward sloping, multiple intersections are possible.
The focus of the fourth installment was on setting up a model analogous to the Keynesian model by replacing the market for capital services excluded by Walras’s Law with something similar to the Keynesian expenditure functions (consumption, investment, government spending, etc.). The key point is that the FF and LM curves implicitly define a corresponding CC curve (shown in Figure 4 of the third installment) with the property that, at all points on the CC curve, the excess demand for (supply of) money exactly equals the excess supply of (demand for) labor. Thus, the CC curve represents a stock equilibrium in the market for commodities (i.e., a single consumption/capital good) rather than a flow rate of expenditure and income as represented by the conventional IS curve. But the inconsistency between the upward-sloping CC curve and the downward sloping IS curve reflects the underlying inconsistency between the neoclassical and the Keynesian paradigms.
In this installment, I am going to work through Thompson’s argument about the potential for an unstable equilibrium in the version of his model with an upward-sloping LM curve corresponding to the case in which non-interest bearing money is monopolistically supplied by a central bank. Thompson makes the argument using Figure 5, a phase diagram showing the potential equilibria for such an economy in terms of the FF curve (representing price levels and nominal interest rates consistent with equilibrium in the markets for labor and capital services) and the CC curve (representing price levels and nominal interest rates consistent with equilibrium in the output market).
A phase diagram shows the direction of price adjustment when the economy is not in equilibrium (one of the two points of intersection between the FF and the CC curves). A disequilibrium implies a price change in response to an excess supply or excess demand in some market. All points above and to the left of the FF curve correspond to an excess supply of capital services, implying a falling nominal interest rate; points below and to the right of the FF curve correspond to excess demand for capital services, implying a rising interest rate. Points above and to the left of the CC curve correspond to an excess demand for output, implying a rising price level; points below and to the right of the CC curve correspond to an excess supply of output, implying a falling price level. Points in between the FF and CC curves correspond either to an excess demand for commodities and for capital services, implying a rising price level and a rising nominal interest rate (in the region between the two points of intersection – Eu and Es — between the CC and FF curves) or to an excess supply of both capital services and commodities, implying a falling interest rate and a falling price level (in the regions below the lower intersection Eu and above the upper intersection Es). The arrows in the diagram indicate the direction in which the price level and the nominal interest rate are changing at any point in the diagram.
Given the direction of price change corresponding to points off the CC and FF curves, the upper intersection is shown to be a stable equilibrium, while the lower intersection is unstable. Moreover, the instability corresponding to the lower intersection is very dangerous, because entering the region between the CC and FF curves below Eu means getting sucked into a vicious downward spiral of prices and interest rates that can only be prevented by a policy intervention to shift the CC curve to the right, either directly by way of increased government spending or tax cuts, or indirectly, through monetary policy aimed at raising the price level and expected inflation, shifting the LM curve, and thereby the CC curve, to the right. It’s like stepping off a cliff into a black hole.
Although I have a lot of reservations about the practical relevance of this model as an analytical tool for understanding cyclical fluctuations and counter-cyclical policy, which I plan to discuss in a future post, the model does resonate with me, and it does so especially after my recent posts about the representative-agent modeling strategy in New Classical economics (here, here, and here). Representative-agent models, I argued, are inherently unable to serve as analytical tools in macroeconomics, because their reductionist approach implies that all relevant decision making can be reduced to the optimization of a single agent, insulating the analysis from any interactions between decision-makers. But it is precisely the interaction effects between decision makers that create analytical problems that constitute the subject matter of the discipline or sub-discipline known as macroeconomics. That Robert Lucas has made it his life’s work to annihilate this field of study is a sad commentary on his contribution, Nobel Prize or no Nobel Prize, as an economic theorist.
That is one reason why I regard Thompson’s model, despite its oversimplifications, as important: it is constructed on a highly aggregated, yet strictly neoclassical, foundation, including continuous market-clearing, arriving at the remarkable conclusion that not only is there an unstable equilibrium, but it is at least possible for an economy in the neighborhood of the unstable equilibrium to be caught in a vicious downward deflationary spiral in which falling prices do not restore equilibrium but, instead, suck the economy into a zero-output black hole. That result seems to me to be a major conceptual breakthrough, showing that the strict rationality assumptions of neoclassical theory can lead to aoutcome that is totally at odds with the usual presumption that the standard neoclassical assumptions inevitably generate a unique stable equilibrium and render macroeconomics superfluous.