Posts Tagged 'Hayek'

Nick Rowe Teaches Us a Lot about Apples and Bananas

Last week I wrote a post responding to a post by Nick Rowe about money and coordination failures. Over the weekend, Nick posted a response to my post (and to one by Brad Delong). Nick’s latest post was all about apples and bananas. It was an interesting post, though for some reason – no doubt unrelated to its form or substance – I found the post difficult to read and think about. But having now read, and I think, understood (more or less), what Nick wrote, I confess to being somewhat underwhelmed. Let me try to explain why I don’t think that Nick has adequately addressed the point that I was raising.

That point being that while coordination failures can indeed be, and frequently are, the result of a monetary disturbance, one that creates an excess demand for money, thereby leading to a contraction of spending, and thus to a reduction of output and employment, it is also possible that a coordination failure can occur independently of a monetary disturbance, at least a disturbance that could be characterized as an excess demand for money that triggers a reduction in spending, income, output, and employment.

Without evaluating his reasoning, I will just restate key elements of Nick’s model – actually two parallel models. There are apple trees and banana trees, and people like to consume both apples and bananas. Some people own apple trees, and some people own banana trees. Owners of apple trees and owners of banana trees trade apples for bananas, so that they can consume a well-balanced diet of both apples and bananas. Oh, and there’s also some gold around. People like gold, but it’s not clear why. In one version of the model, people use it as a medium of exchange, selling bananas for gold and using gold to buy apples or selling apples for gold and using gold to buy bananas. In the other version of the model, people just barter apples for bananas. Nick then proceeds to show that if trade is conducted by barter, an increase in the demand for gold, does not affect the allocation of resources, because agents continue to trade apples for bananas to achieve the desired allocation, even if the value of gold is held fixed. However, if trade is mediated by gold, the increased demand for gold, with prices held fixed, implies corresponding excess supplies of both apples and bananas, preventing the optimal reallocation of apples and bananas through trade, which Nick characterizes as a recession. However, if there is a shift in demand from bananas to apples or vice versa, with prices fixed in either model, there will be an excess demand for bananas and an excess supply of apples (or vice versa). The outcome is suboptimal because Pareto-improving trade is prevented, but there is no recession in Nick’s view because the excess supply of one real good is exactly offset by an excess demand for the other real good. Finally, Nick considers a case in which there is trade in apple trees and banana trees. An increase in the demand for fruit trees, owing to a reduced rate of time preference, causes no problems in the barter model, because there is no impediment to trading apples for bananas. However, in the money model, the reduced rate of time preference causes an increase in the amount of gold people want to hold, the foregone interest from holding more having been reduced, which prevents optimal trade with prices held fixed.

Here are the conclusions that Nick draws from his two models.

Bottom line. My conclusions.

For the second shock (a change in preferences away from apples towards bananas), we get the same reduction in the volume of trade whether we are in a barter or a monetary economy. Monetary coordination failures play no role in this sort of “recession”. But would we call that a “recession”? Well, it doesn’t look like a normal recession, because there is an excess demand for bananas.

For both the first and third shocks, we get a reduction in the volume of trade in a monetary economy, and none in the barter economy. Monetary coordination failures play a decisive role in these sorts of recessions, even though the third shock that caused the recession was not a monetary shock. It was simply an increased demand for fruit trees, because agents became more patient. And these sorts of recessions do look like recessions, because there is an excess supply of both apples and bananas.

Or, to say the same thing another way: if we want to understand a decrease in output and employment caused by structural unemployment, monetary coordination failures don’t matter, and we can ignore money. Everything else is a monetary coordination failure. Even if the original shock was not a monetary shock, that non-monetary shock can cause a recession because it causes a monetary coordination failure.

Why am I underwhelmed by Nick’s conclusions? Well, it just seems that, WADR, he is making a really trivial point. I mean in a two-good world with essentially two representative agents, there is not really that much that can go wrong. To put this model through its limited endowment of possible disturbances, and to show that only an excess demand for money implies a “recession,” doesn’t seem to me to prove a great deal. And I was tempted to say that the main thing that it proves is how minimal is the contribution to macroeconomic understanding that can be derived from a two-good, two-agent model.

But, in fact, even within a two-good, two-agent model, it turns out there is room for a coordination problem, not considered by Nick, to occur. In his very astute comment on Nick’s post, Kevin Donoghue correctly pointed out that even trade between an apple grower and a banana grower depends on the expectations of each that the other will actually have what to sell in the next period. How much each one plants depends on his expectations of how much the other will plant. If neither expects the other to plant, the output of both will fall.

Commenting on an excellent paper by Backhouse and Laidler about the promising developments in macroeconomics that were cut short because of the IS-LM revolution, I made reference to a passage quoted by Backhouse and Laidler from Bjorn Hansson about the Stockholm School. It was the Stockholm School along with Hayek who really began to think deeply about the relationship between expectations and coordination failures. Keynes also thought about that, but didn’t grasp the point as deeply as did the Swedes and the Austrians. Sorry to quote myself, but it’s already late and I’m getting tired. I think the quote explains what I think is so lacking in a lot of modern macroeconomics, and, I am sorry to say, in Nick’s discussion of apples and bananas.

Backhouse and Laidler go on to cite the Stockholm School (of which Ohlin was a leading figure) as an example of explicitly dynamic analysis.

As Bjorn Hansson (1982) has shown, this group developed an explicit method, using the idea of a succession of “unit periods,” in which each period began with agents having plans based on newly formed expectations about the outcome of executing them, and ended with the economy in some new situation that was the outcome of executing them, and ended with the economy in some new situation that was the outcome of market processes set in motion by the incompatibility of those plans, and in which expectations had been reformulated, too, in the light of experience. They applied this method to the construction of a wide variety of what they called “model sequences,” many of which involved downward spirals in economic activity at whose very heart lay rising unemployment. This is not the place to discuss the vexed question of the extent to which some of this work anticipated the Keynesian multiplier process, but it should be noted that, in IS-LM, it is the limit to which such processes move, rather than the time path they follow to get there, that is emphasized.

The Stockholm method seems to me exactly the right way to explain business-cycle downturns. In normal times, there is a rough – certainly not perfect, but good enough — correspondence of expectations among agents. That correspondence of expectations implies that the individual plans contingent on those expectations will be more or less compatible with one another. Surprises happen; here and there people are disappointed and regret past decisions, but, on the whole, they are able to adjust as needed to muddle through. There is usually enough flexibility in a system to allow most people to adjust their plans in response to unforeseen circumstances, so that the disappointment of some expectations doesn’t become contagious, causing a systemic crisis.

But when there is some sort of major shock – and it can only be a shock if it is unforeseen – the system may not be able to adjust. Instead, the disappointment of expectations becomes contagious. If my customers aren’t able to sell their products, I may not be able to sell mine. Expectations are like networks. If there is a breakdown at some point in the network, the whole network may collapse or malfunction. Because expectations and plans fit together in interlocking networks, it is possible that even a disturbance at one point in the network can cascade over an increasingly wide group of agents, leading to something like a system-wide breakdown, a financial crisis or a depression.

But the “problem” with the Stockholm method was that it was open-ended. It could offer only “a wide variety” of “model sequences,” without specifying a determinate solution. It was just this gap in the Stockholm approach that Keynes was able to fill. He provided a determinate equilibrium, “the limit to which the Stockholm model sequences would move, rather than the time path they follow to get there.” A messy, but insightful, approach to explaining the phenomenon of downward spirals in economic activity coupled with rising unemployment was cast aside in favor of the neater, simpler approach of Keynes. No wonder Ohlin sounds annoyed in his comment, quoted by Backhouse and Laidler, about Keynes. Tractability trumped insight.

Unfortunately, that is still the case today. Open-ended models of the sort that the Stockholm School tried to develop still cannot compete with the RBC and DSGE models that have displaced IS-LM and now dominate modern macroeconomics. The basic idea that modern economies form networks, and that networks have properties that are not reducible to just the nodes forming them has yet to penetrate the trained intuition of modern macroeconomists. Otherwise, how would it have been possible to imagine that a macroeconomic model could consist of a single representative agent? And just because modern macroeconomists have expanded their models to include more than a single representative agent doesn’t mean that the intellectual gap evidenced by the introduction of representative-agent models into macroeconomic discourse has been closed.

How to Think about Own Rates of Interest, Version 2.0

In my previous post, I tried to explain how to think about own rates of interest. Unfortunately, I made a careless error in calculating the own rate of interest in the simple example I constructed to capture the essence of Sraffa’s own-rate argument against Hayek’s notion of the natural rate of interest. But sometimes these little slip-ups can be educational, so I am going to try to turn my conceptual misstep to advantage in working through and amplifying the example I presented last time.

But before I reproduce the passage from Sraffa’s review that will serve as our basic text in this post as it did in the previous post, I want to clarify another point. The own rate of interest for a commodity may be calculated in terms of any standard of value. If I borrow wheat and promise to repay in wheat, the wheat own rate of interest may be calculated in terms of wheat or in terms of any other standard; all of those rates are own rates, but each is expressed in terms of a different standard.

Lend me 100 bushels of wheat today, and I will pay you back 102 bushels next year. The own rate of interest for wheat in terms of wheat would be 2%. Alternatively, I could borrow $100 of wheat today and promise to pay back $102 of wheat next year. The own rate of interest for wheat in terms of wheat and the own rate of interest for wheat in terms of dollars would be equal if and only if the forward dollar price of wheat is the same as the current dollar price of wheat. The commodity or asset in terms of which a price is quoted or in terms of which we measure the own rate is known as the numeraire. (If all that Sraffa was trying to say in criticizing Hayek was that there are many equivalent ways of expressing own interest rates, he was making a trivial point. Perhaps Hayek didn’t understand that trivial point, in which case the rough treatment he got from Sraffa was not undeserved. But it seems clear that Sraffa was trying — unsuccessfully — to make a more substantive point than that.)

In principle, there is a separate own rate of interest for every commodity and for every numeraire. If there are n commodities, there are n potential numeraires, and n own rates can be expressed in terms of each numeraire. So there are n-squared own rates. Each own rate can be thought of as equilibrating the demand for loans made in terms of a given commodity and a given numeraire. But arbitrage constraints tightly link all these separate own rates together. If it were cheaper to borrow in terms of one commodity than another, or in terms of one numeraire than another, borrowers would switch to the commodity and numeraire with the lowest cost of borrowing, and if it were more profitable to lend in terms of one commodity, or in terms of one numeraire, than another, lenders would switch to lending in terms of the commodity or numeraire with the highest return.

Thus, competition tends to equalize own rates across all commodities and across all numeraires. Of course, perfect arbitrage requires the existence of forward markets in which to contract today for the purchase or sale of a commodity at a future date. When forward markets don’t exist, some traders may anticipate advantages to borrowing or lending in terms of particular commodities based on their expectations of future prices for those commodities. The arbitrage constraint on the variation of interest rates was discovered and explained by Irving Fisher in his great work Appreciation and Interest.

It is clear that if the unit of length were changed and its change were foreknown, contracts would be modified accordingly. Suppose a yard were defined (as once it probably was) to be the length of the king’s girdle, and suppose the king to be a child. Everybody would then know that the “yard” would increase with age and a merchant who should agree to deliver 1000 “yards” ten years hence, would make his terms correspond to his expectations. To alter the mode of measurement does not alter the actual quantities involved but merely the numbers by which they are represented. (p. 1)

We thus see that the farmer who contracts a mortgage in gold is, if the interest is properly adjusted, no worse and no better off than if his contract were in a “wheat” standard or a “multiple” standard. (p. 16)

I pause to make a subtle, but, I think, an important, point. Although the relationship between the spot and the forward price of any commodity tightly constrains the own rate for that commodity, the spot/forward relationship does not determine the own rate of interest for that commodity. There is always some “real” rate reflecting a rate of intertemporal exchange that is consistent with intertemporal equilibrium. Given such an intertemporal rate of exchange — a real rate of interest — the spot/forward relationship for a commodity in terms of a numeraire pins down the own rate for that commodity in terms of that numeraire.

OK with that introduction out of the way, let’s go back to my previous post in which I wrote the following:

Sraffa correctly noted that arbitrage would force the terms of such a loan (i.e., the own rate of interest) to equal the ratio of the current forward price of the commodity to its current spot price, buying spot and selling forward being essentially equivalent to borrowing and repaying.

That statement now seems quite wrong to me. Sraffa did not assert that arbitrage would force the own rate of interest to equal the ratio of the spot and forward prices. He merely noted that in a stationary equilibrium with equality between all spot and forward prices, all own interest rates would be equal. I criticized him for failing to note that in a stationary equilibrium all own rates would be zero. The conclusion that all own rates would be zero in a stationary equilibrium might in fact be valid, but if it is, it is not as obviously valid as I suggested, and my criticism of Sraffa and Ludwig von Mises for not drawing what seemed to me an obvious inference was not justified. To conclude that own rates are zero in a stationary equilibrium, you would, at a minimum, have to show that there is at least one commodity which could be carried from one period to the next at a non-negative profit. Sraffa may have come close to suggesting such an assumption in the passage in which he explains how borrowing to buy cotton spot and immediately selling cotton forward can be viewed as the equivalent of contracting a loan in terms of cotton, but he did not make that assumption explicitly. In any event, I mistakenly interpreted him to be saying that the ratio of the spot and forward prices is the same as the own interest rate, which is neither true nor what Sraffa meant.

And now let’s finally go back to the key quotation of Sraffa’s that I tried unsuccessfully to parse in my previous post.

Suppose there is a change in the distribution of demand between various commodities; immediately some will rise in price, and others will fall; the market will expect that, after a certain time, the supply of the former will increase, and the supply of the latter fall, and accordingly the forward price, for the date on which equilibrium is expected to be restored, will be below the spot price in the case of the former and above it in the case of the latter; in other words, the rate of interest on the former will be higher than on the latter. (“Dr. Hayek on Money and Capital,” p. 50)

In my previous post I tried to flesh out Sraffa’s example by supposing that, in the stationary equilibrium before the demand shift, tomatoes and cucumbers were both selling for a dollar each. In a stationary equilibrium, tomato and cucumber prices would remain, indefinitely into the future, at a dollar each. A shift in demand from tomatoes to cucumbers upsets the equilibrium, causing the price of tomatoes to fall to, say, $.90 and the price of cucumbers to rise to, say, $1.10. But Sraffa also argued that the prices of tomatoes and cucumbers would diverge only temporarily from their equilibrium values, implicitly assuming that the long-run supply curves of both tomatoes and cucumbers are horizontal at a price of $1 per unit.

I misunderstood Sraffa to be saying that the ratio of the future price and the spot price of tomatoes equals one plus the own rate on tomatoes. I therefore incorrectly calculated the own rate on tomatoes as 1/.9 minus one or 11.1%. There were two mistakes. First, I incorrectly inferred that equality of all spot and forward prices implies that the real rate must be zero, and second, as Nick Edmunds pointed out in his comment, a forward price exceeding the spot price would actually be reflected in an own rate less than the zero real rate that I had been posited. To calculate the own rate on tomatoes, I ought to have taken the ratio of spot price to the forward price — (.9/1) — and subtracted one plus the real rate. If the real rate is zero, then the implied own rate is .9 minus 1, or -10%.

To see where this comes from, we can take the simple algebra from Fisher (pp. 8-9). Let i be the interest rate calculated in terms of one commodity and one numeraire, and j be the rate of interest calculated in terms of a different commodity in that numeraire. Further, let a be the rate at which the second commodity appreciates relative to the first commodity. We have the following relationship derived from the arbitrage condition.

(1 + i) = (1 + j)(1 + a)

Now in our case, we are trying to calculate the own rate on tomatoes given that tomatoes are expected (an expectation reflected in the forward price of tomatoes) to appreciate by 10% from $.90 to $1.00 over the term of the loan. To keep the analysis simple, assume that i is zero. Although I concede that a positive real rate may be consistent with the stationary equilibrium that I, following Sraffa, have assumed, a zero real rate is certainly not an implausible assumption, and no important conclusions of this discussion hinge on assuming that i is zero.

To apply Fisher’s framework to Sraffa’s example, we need only substitute the ratio of the forward price of tomatoes to the spot price — [p(fwd)/p(spot)] — for the appreciation factor (1 + a).

So, in place of the previous equation, I can now substitute the following equivalent equation:

(1 + i) = (1 + j) [p(fwd)/p(spot)].

Rearranging, we get:

[p(spot)/p(fwd)] (1 + i) = (1 + j).

If i = 0, the following equation results:

[p(spot)/p(fwd)] = (1 + j).

In other words:

j = [p(spot)/p(fwd)] – 1.

If the ratio of the spot to the forward price is .9, then the own rate on tomatoes, j, equals -10%.

My assertion in the previous post that the own rate on cucumbers would be negative by the amount of expected depreciation (from $1.10 to $1) in the next period was also backwards. The own rate on cucumbers would have to exceed the zero equilibrium real rate by as much as cucumbers would depreciate at the time of repayment. So, for cucumbers, j would equal 11%.

Just to elaborate further, let’s assume that there is a third commodity, onions, and that, in the initial equilibrium, the unit prices of onions, tomatoes and cucumbers are equal. If the demand shift from tomatoes to cucumbers does not affect the demand for onions, then, even after the shift in demand, the price of onions will remain one dollar per onion.

The table below shows prices and own rates for tomatoes, cucumbers and onions for each possible choice of numeraire. If prices are quoted in tomatoes, the price of tomatoes is fixed at 1. Given a zero real rate, the own rate on tomatoes in period is zero. What about the own rate on cucumbers? In period 0, with no change in prices expected, the own rate on cucumbers is also zero. However in period 1, after the price of cucumbers has risen to 1.22 tomatoes, the own rate on cucumbers must reflect the expected reduction in the price of a cucumber in terms of tomatoes from 1.22 tomatoes in period 1 to 1 tomato in period 2, a price reduction of 22% percent in terms of tomatoes, implying a cucumber own rate of 22% in terms of tomatoes. Similarly, the onion own rate in terms of tomatoes would be 11% percent reflecting a forward price for onions in terms of tomatoes 11% below the spot price for onions in terms of tomatoes. If prices were quoted in terms of cucumbers, the cucumber own rate would be zero, and because the prices of tomatoes and onions would be expected to rise in terms of cucumbers, the tomato and onion own rates would be negative (-18.2% for tomatoes and -10% for onions). And if prices were quoted in terms of onions, the onion own rate would be zero, while the tomato own rate, given the expected appreciation of tomatoes in terms of onions, would be negative (-10%), and the cucumber own rate, given the expected depreciation of cucumbers in terms of onions, would be positive (10%).

own_rates_in_terms_of_tomatoes_cucumbers_onions

The next table, summarizing the first one, is a 3 by 3 matrix showing each of the nine possible combinations of numeraires and corresponding own rates.

own_rates_in_terms_of_tomatoes_cucumbers_onions_2

Thus, although the own rates of the different commodities differ, and although the commodity own rates differ depending on the choice of numeraire, the cost of borrowing (and the return to lending) is equal regardless of which commodity and which numeraire is chosen. As I stated in my previous post, Sraffa believed that, by showing that own rates can diverge, he showed that Hayek’s concept of a natural rate of interest was a nonsense notion. However, the differences in own rates, as Fisher had already showed 36 years earlier, are purely nominal. The underlying real rate, under Sraffa’s own analysis, is independent of the own rates.

Moreover, as I pointed out in my previous post, though the point was made in the context of a confused exposition of own rates,  whenever the own rate for a commodity is negative, there is an incentive to hold it now for sale in the next period at a higher price it would fetch in the current period. It is therefore only possible to observe negative own rates on commodities that are costly to store. Only if the cost of holding a commodity is greater than its expected appreciation would it not be profitable to withhold the commodity from sale this period and to sell instead in the following period. The rate of appreciation of a commodity cannot exceed the cost of storing it (as a percentage of its price).

What do I conclude from all this? That neither Sraffa nor Hayek adequately understood Fisher. Sraffa seems to have argued that there would be multiple real own rates of interest in disequilibrium — or at least his discussion of own rates seem to suggest that that is what he thought — while Hayek failed to see that there could be multiple nominal own rates. Fisher provided a definitive exposition of the distinction between real and nominal rates that encompasses both own rates and money rates of interest.

A. C. Pigou, the great and devoted student of Alfred Marshall, and ultimately his successor at Cambridge, is supposed to have said “It’s all in Marshall.” Well, one could also say “it’s all in Fisher.” Keynes, despite going out of his way in Chapter 12 of the General Theory to criticize Fisher’s distinction between the real and nominal rates of interest, actually vindicated Fisher’s distinction in his exposition of own rates in Chapter 17 of the GT, providing a valuable extension of Fisher’s analysis, but apparently failing to see the connection between his discussion and Fisher’s, and instead crediting Sraffa for introducing the own-rate analysis, even as he undermined Sraffa’s ambiguous suggestion that real own rates could differ. Go figure.

How to Think about Own Rates of Interest

Phil Pilkington has responded to my post about the latest version of my paper (co-authored by Paul Zimmerman) on the Sraffa-Hayek debate about the natural rate of interest. For those of you who haven’t been following my posts on the subject, here’s a quick review. Almost three years ago I wrote a post refuting Sraffa’s argument that Hayek’s concept of the natural rate of interest is incoherent, there being a multiplicity of own rates of interest in a barter economy (Hayek’s benchmark for the rate of interest undisturbed by monetary influences), which makes it impossible to identify any particular own rate as the natural rate of interest.

Sraffa maintained that if there are many own rates of interest in a barter economy, none of them having a claim to priority over the others, then Hayek had no basis for singling out any particular one of them as the natural rate and holding it up as the benchmark rate to guide monetary policy. I pointed out that Ludwig Lachmann had answered Sraffa’s attack (about 20 years too late) by explaining that even though there could be many own rates for individual commodities, all own rates are related by the condition that the cost of borrowing in terms of all commodities would be equalized, differences in own rates reflecting merely differences in expected appreciation or depreciation of the different commodities. Different own rates are simply different nominal rates; there is a unique real own rate, a point demonstrated by Irving Fisher in 1896 in Appreciation and Interest.

Let me pause here for a moment to explain what is meant by an own rate of interest. It is simply the name for the rate of interest corresponding to a loan contracted in terms of a particular commodity, the borrower receiving the commodity now and repaying the lender with the same commodity when the term of the loan expires. Sraffa correctly noted that in equilibrium arbitrage would force the terms of such a loan (i.e., the own rate of interest) to equal the ratio of the current forward price of the commodity to its current spot price, buying spot and selling forward being essentially equivalent to borrowing and repaying.

Now what is tricky about Sraffa’s argument against Hayek is that he actually acknowledges at the beginning of his argument that in a stationary equilibrium, presumably meaning that prices remain at their current equilibrium levels over time, all own rates would be equal. In fact if prices remain (and are expected to remain) constant period after period, the ratio of forward to spot prices would equal unity for all commodities implying that the natural rate of interest would be zero. Sraffa did not make that point explicitly, but it seems to be a necessary implication of his analysis. (This implication seems to bear on an old controversy in the theory of capital and interest, which is whether the rate of interest would be positive in a stationary equilibrium with constant real income). Schumpeter argued that the equilibrium rate of interest would be zero, and von Mises argued that it would be positive, because time preference implying that the rate of interest is necessarily always positive is a kind of a priori praxeological law of nature, the sort of apodictic gibberish to which von Mises was regrettably predisposed. The own-rate analysis supports Schumpeter against Mises.

So to make the case against Hayek, Sraffa had to posit a change, a shift in demand from one product to another, that disrupts the pre-existing equilibrium. Here is the key passage from Sraffa:

Suppose there is a change in the distribution of demand between various commodities; immediately some will rise in price, and others will fall; the market will expect that, after a certain time, the supply of the former will increase, and the supply of the latter fall, and accordingly the forward price, for the date on which equilibrium is expected to be restored, will be below the spot price in the case of the former and above it in the case of the latter; in other words, the rate of interest on the former will be higher than on the latter. (p. 50)

This is a difficult passage, and in previous posts, and in my paper with Zimmerman, I did not try to parse this passage. But I am going to parse it now. Assume that demand shifts from tomatoes to cucumbers. In the original equilibrium, let the prices of both be $1 a pound. With a zero own rate of interest in terms of both tomatoes and cucumbers, you could borrow a pound of tomatoes today and discharge your debt by repaying the lender a pound of tomatoes at the expiration of the loan. However, after the demand shift, the price of tomatoes falls to, say, $0.90 a pound, and the price of cucumbers rises to, say, $1.10 a pound. Sraffa posits that the price changes are temporary, not because the demand shift is temporary, but because the supply curves of tomatoes and cucumbers are perfectly elastic at $1 a pound. However, supply does not adjust immediately, so Sraffa believes that there can be a temporary deviation from the long-run equilibrium prices of tomatoes and cucumbers.

The ratio of the forward prices to the spot prices tells you what the own rates are for tomatoes and cucumbers. For tomatoes, the ratio is 1/.9, implying an own rate of 11.1%. For cucumbers the ratio is 1/1.1, implying an own rate of -9.1%. Other prices have not changed, so all other own rates remain at 0. Having shown that own rates can diverge, Sraffa thinks that he has proven Hayek’s concept of a natural rate of interest to be a nonsense notion. He was mistaken.

There are at least two mistakes. First, the negative own rate on cucumbers simply means that no one will lend in terms of cucumbers for negative interest when other commodities allow lending at zero interest. It also means that no one will hold cucumbers in this period to sell at a lower price in the next period than the cucumbers would fetch in the current period. Cucumbers are a bad investment, promising a negative return; any lending and investing will be conducted in terms of some other commodity. The negative own rate on cucumbers signifies a kind of corner solution, reflecting the impossibility of transporting next period’s cucumbers into the present. If that were possible cucumber prices would be equal in the present and the future, and the cucumber own rate would be equal to all other own rates at zero. But the point is that if any lending takes place, it will be at a zero own rate.

Second, the positive own rate on tomatoes means that there is an incentive to lend in terms of tomatoes rather than lend in terms of other commodities. But as long as it is possible to borrow in terms of other commodities at a zero own rate, no one borrows in terms of tomatoes. Thus, if anyone wanted to lend in terms of tomatoes, he would have to reduce the rate on tomatoes to make borrowers indifferent between borrowing in terms of tomatoes and borrowing in terms of some other commodity. However, if tomatoes today can be held at zero cost to be sold at the higher price prevailing next period, currently produced tomatoes would be sold in the next period rather than sold today. So if there were no costs of holding tomatoes until the next period, the price of tomatoes in the next period would be no higher than the price in the current period. In other words, the forward price of tomatoes cannot exceed the current spot price by more than the cost of holding tomatoes until the next period. If the difference between the spot and the forward price reflects no more than the cost of holding tomatoes till the next period, then, as Keynes showed in chapter 17 of the General Theory, the own rates are indeed effectively equalized after appropriate adjustment for storage costs and expected appreciation.

Thus, it was Keynes, who having selected Sraffa to review Hayek’s Prices and Production in the Economic Journal, of which Keynes was then the editor, adapted Sraffa’s own rate analysis in the General Theory, but did so in a fashion that, at least partially, rehabilitated the very natural-rate analysis that had been the object of Sraffa’s scorn in his review of Prices and Production. Keynes also rejected the natural-rate analysis, but he did so not because it is nonsensical, but because the natural rate is not independent of the level of employment. Keynes’s argument that the natural rate depends on the level of employment seems to me to be inconsistent with the idea that the IS curve is downward sloping. But I will have to think about that a bit and reread the relevant passage in the General Theory and perhaps revisit the point in a future post.

 UPDATE (07/28/14 13:02 EDT): Thanks to my commenters for pointing out that my own thinking about the own rate of interest was not quite right. I should have defined the own rate in terms of a real numeraire instead of $, which was a bit of awkwardness that I should have fixed before posting. I will try to publish a corrected version of this post later today or tomorrow. Sorry for posting without sufficient review and revision.

UPDATE (08/04/14 11:38 EDT): I hope to post the long-delayed sequel to this post later today. A number of personal issues took precedence over posting, but I also found it difficult to get clear on several minor points, which I hope that I have now resolved adequately, for example I found that defining the own rate in terms of a real numeraire was not really the source of my problem with this post, though it was a useful exercise to work through. Anyway, stay tuned.

A New Version of my Paper (with Paul Zimmerman) on the Hayek-Sraffa Debate Is Available on SSRN

One of the good things about having a blog (which I launched July 5, 2011) is that I get comments about what I am writing about from a lot of people that I don’t know. One of my most popular posts – it’s about the sixteenth most visited — was one I wrote, just a couple of months after starting the blog, about the Hayek-Sraffa debate on the natural rate of interest. Unlike many popular posts, to which visitors are initially drawn from very popular blogs that linked to those posts, but don’t continue to drawing a lot of visitors, this post initially had only modest popularity, but still keeps on drawing visitors.

That post also led to a collaboration between me and my FTC colleague Paul Zimmerman on a paper “The Sraffa-Hayek Debate on the Natural Rate of Interest” which I presented two years ago at the History of Economics Society conference. We have now finished our revisions of the version we wrote for the conference, and I have just posted the new version on SSRN and will be submitting it for publication later this week.

Here’s the abstract posted on the SSRN site:

Hayek’s Prices and Production, based on his hugely successful lectures at LSE in 1931, was the first English presentation of Austrian business-cycle theory, and established Hayek as a leading business-cycle theorist. Sraffa’s 1932 review of Prices and Production seems to have been instrumental in turning opinion against Hayek and the Austrian theory. A key element of Sraffa’s attack was that Hayek’s idea of a natural rate of interest, reflecting underlying real relationships, undisturbed by monetary factors, was, even from Hayek’s own perspective, incoherent, because, without money, there is a multiplicity of own rates, none of which can be uniquely identified as the natural rate of interest. Although Hayek’s response failed to counter Sraffa’s argument, Ludwig Lachmann later observed that Keynes’s treatment of own rates in Chapter 17 of the General Theory (itself a generalization of Fisher’s (1896) distinction between the real and nominal rates of interest) undercut Sraffa’s criticism. Own rates, Keynes showed, cannot deviate from each other by more than expected price appreciation plus the cost of storage and the commodity service flow, so that anticipated asset yields are equalized in intertemporal equilibrium. Thus, on Keynes’s analysis in the General Theory, the natural rate of interest is indeed well-defined. However, Keynes’s revision of Sraffa’s own-rate analysis provides only a partial rehabilitation of Hayek’s natural rate. There being no unique price level or rate of inflation in a barter system, no unique money natural rate of interest can be specified. Hayek implicitly was reasoning in terms of a constant nominal value of GDP, but barter relationships cannot identify any path for nominal GDP, let alone a constant one, as uniquely compatible with intertemporal equilibrium.

Aside from clarifying the conceptual basis of the natural-rate analysis and its relationship to Sraffa’s own-rate analysis, the paper also highlights the connection (usually overlooked but mentioned by Harald Hagemann in his 2008 article on the own rate of interest for the International Encyclopedia of the Social Sciences) between the own-rate analysis, in either its Sraffian or Keynesian versions, and Fisher’s early distinction between the real and nominal rates of interest. The conceptual identity between Fisher’s real and nominal distinction and Keynes’s own-rate analysis in the General Theory only magnifies the mystery associated with Keynes’s attack in chapter 13 of the General Theory on Fisher’s distinction between the real and the nominal rates of interest.

I also feel that the following discussion of Hayek’s role in developing the concept of intertemporal equilibrium, though tangential to the main topic of the paper, makes an important point about how to think about intertemporal equilibrium.

Perhaps the key analytical concept developed by Hayek in his early work on monetary theory and business cycles was the idea of an intertemporal equilibrium. Before Hayek, the idea of equilibrium had been reserved for a static, unchanging, state in which economic agents continue doing what they have been doing. Equilibrium is the end state in which all adjustments to a set of initial conditions have been fully worked out. Hayek attempted to generalize this narrow equilibrium concept to make it applicable to the study of economic fluctuations – business cycles – in which he was engaged. Hayek chose to formulate a generalized equilibrium concept. He did not do so, as many have done, by simply adding a steady-state rate of growth to factor supplies and technology. Nor did Hayek define equilibrium in terms of any objective or measurable magnitudes. Rather, Hayek defined equilibrium as the mutual consistency of the independent plans of individual economic agents.

The potential consistency of such plans may be conceived of even if economic magnitudes do not remain constant or grow at a constant rate. Even if the magnitudes fluctuate, equilibrium is conceivable if the fluctuations are correctly foreseen. Correct foresight is not the same as perfect foresight. Perfect foresight is necessarily correct; correct foresight is only contingently correct. All that is necessary for equilibrium is that fluctuations (as reflected in future prices) be foreseen. It is not even necessary, as Hayek (1937) pointed out, that future price changes be foreseen correctly, provided that individual agents agree in their anticipations of future prices. If all agents agree in their expectations of future prices, then the individual plans formulated on the basis of those anticipations are, at least momentarily, equilibrium plans, conditional on the realization of those expectations, because the realization of those expectations would allow the plans formulated on the basis of those expectations to be executed without need for revision. What is required for intertemporal equilibrium is therefore a contingently correct anticipation by future agents of future prices, a contingent anticipation not the result of perfect foresight, but of contingently, even fortuitously, correct foresight. The seminal statement of this concept was given by Hayek in his classic 1937 paper, and the idea was restated by J. R. Hicks (1939), with no mention of Hayek, two years later in Value and Capital.

I made the following comment in a footnote to the penultimate sentence of the quotation:

By defining correct foresight as a contingent outcome rather than as an essential property of economic agents, Hayek elegantly avoided the problems that confounded Oskar Morgenstern ([1935] 1976) in his discussion of the meaning of equilibrium.

I look forward to reading your comments.

G. L. S. Shackle and the Indeterminacy of Economics

A post by Greg Hill, which inspired a recent post of my own, and Greg’s comment on that post, have reminded me of the importance of the undeservedly neglected English economist, G. L. S. Shackle, many of whose works I read and profited from as a young economist, but which I have hardly looked at for many years. A student of Hayek’s at the London School of Economics in the 1930s, Shackle renounced his early Hayekian views and the doctoral dissertation on capital theory that he had already started writing under Hayek’s supervision, after hearing a lecture by Joan Robinson in 1935 about the new theory of income and employment that Keynes was then in the final stages of writing up to be published the following year as The General Theory of Employment, Interest and Money. When Shackle, with considerable embarrassment, had to face Hayek to inform him that he could not finish the dissertation that he had started, no longer believing in what he had written, and having been converted to Keynes’s new theory. After hearing that Shackle was planning to find a new advisor under whom to write a new dissertation on another topic, Hayek, in a gesture of extraordinary magnanimity, responded that of course Shackle was free to write on whatever topic he desired, and that he would be happy to continue to serve as Shackle’s advisor regardless of the topic Shackle chose.

Although Shackle became a Keynesian, he retained and developed a number of characteristic Hayekian ideas (possibly extending them even further than Hayek would have), especially the notion that economic fluctuations result from the incompatibility between the plans that individuals are trying to implement, an incompatibility stemming from the imperfect and inconsistent expectations about the future that individuals hold, at least some plans therefore being doomed to failure. For Shackle the conception of a general equilibrium in which all individual plans are perfectly reconciled was a purely mental construct that might be useful in specifying the necessary conditions for the harmonization of individually formulated plans, but lacking descriptive or empirical content. Not only is a general equilibrium never in fact achieved, the very conception of such a state is at odds with the nature of reality. For example, the phenomenon of surprise (and, I would add, regret) is, in Shackle’s view, a characteristic feature of economic life, but under the assumption of most economists (though not of Knight, Keynes or Hayek) that all events can be at least be forecasted in terms of their underlying probability distributions, the phenomenon of surprise cannot be understood. There are some observed events – black swans in Taleb’s terminology – that we can’t incorporate into the standard probability calculus, and are completely inconsistent with the general equilibrium paradigm.

A rational-expectations model allows for stochastic variables (e.g., will it be rainy or sunny two weeks from tomorrow), but those variables are assumed to be drawn from distributions known by the agents, who can also correctly anticipate the future prices conditional on any realization (at a precisely known future moment in time) of a random variable. Thus, all outcomes correspond to expectations conditional on all future realizations of random variables; there are no surprises and no regrets. For a model to be correct and determinate in this sense, it must have accounted fully for all the non-random factors that could affect outcomes. If any important variable(s) were left out, the predictions of the model could not be correct. In other words, unless the model is properly specified, all causal factors having been identified and accounted for, the model will not generate correct predictions for all future states and all possible realizations of random variables. And unless the agents in the model can predict prices as accurately as the fully determined model can predict them, the model will not unfold through time on an equilibrium time path. This capability of forecasting future prices contingent on the realization of all random variables affecting the actual course of the model through time, is called rational expectations, which differs from perfect foresight only in being unable to predict in advance the realizations of the random variables. But all prices conditional on those realizations are correctly expected. Which is the more demanding assumption – rational expectations or perfect foresight — is actually not entirely clear to me.

Now there are two ways to think about rational expectations — one benign and one terribly misleading. The benign way is that the assumption of rational expectations is a means of checking the internal consistency of a model. In other words, if we are trying to figure out whether a model is coherent, we can suppose that the model is the true model; if we then posit that the expectations of the agents correspond to the solution of the model – i.e., the agents expect the equilibrium outcome – the solution of the model will confirm the expectations that have been plugged into the minds of the agents of the model. This is sometimes called a fixed-point property. If the model doesn’t have this fixed-point property, then there is something wrong with the model. So the assumption of rational expectations does not necessarily involve any empirical assertion about the real world, it does not necessarily assert anything about how expectations are formed or whether they ever are rational in the sense that agents can predict the outcome of the relevant model. The assumption merely allows the model to be tested for latent inconsistencies. Equilibrium expectations being a property of equilibrium, it makes no sense for equilibrium expectations not to generate an equilibrium.

But the other way of thinking about rational expectations is as an empirical assertion about what the expectations of people actually are or how those expectations are formed. If that is how we think about rational expectations, then we are saying people always anticipate the solution of the model. And if the model is internally consistent, then the empirical assumption that agents really do have rational expectations means that we are making an empirical assumption that the economy is in fact always in equilibrium, i.e., that is moving through time along an equilibrium path. If agents in the true model expect the equilibrium of the true model, the agents must be in equilibrium. To break out of that tight circle, either expectations have to be wrong (non-rational) or the model from which people derive their expectations must be wrong.

Of course, one way to finesse this problem is to say that the model is not actually true and expectations are not fully rational, but that the assumptions are close enough to being true for the model to be a decent approximation of reality. That is a defensible response, but one either has to take that assertion on faith, or there has to be strong evidence that the real world corresponds to the predictions of the model. Rational-expectations models do reasonably well in predicting the performance of economies near full employment, but not so well in periods like the Great Depression and the Little Depression. In other words, they work pretty well when we don’t need them, and not so well when we do need them.

The relevance of the rational-expectations assumption was discussed a year and a half ago by David Levine of Washington University. Levine was an undergraduate at UCLA after I had left, and went on to get his Ph.D. from MIT. He later returned to UCLA and held the Armen Alchian chair in economics from 1997 to 2006. Along with Michele Boldrin, Levine wrote a wonderful book Aginst Intellectual Monopoly. More recently he has written a little book (Is Behavioral Economics Doomed?) defending the rationality assumption in all its various guises, a book certainly worth reading even (or especially) if one doesn’t agree with all of its conclusions. So, although I have a high regard for Levine’s capabilities as an economist, I am afraid that I have to criticize what he has to say about rational expectations. I should also add that despite my criticism of Levine’s defense of rational expectations, I think the broader point that he makes that people do learn from experience, and that public policies should not be premised on the assumption that people will not eventually figure out how those policies are working, is valid.

In particular, let’s look at a post that Levine contributed to the Huffington Post blog defending the economics profession against the accusation that the economics profession is useless as demonstrated by their failure to predict the financial crisis of 2008. To counter this charge, Levine compared economics to physics — not necessarily the strategy I would have recommended for casting economics in a favorable light, but that’s merely an aside. Just as there is an uncertainty principle in physics, which says that you cannot identify simultaneously both the location and the speed of an electron, there’s an analogous uncertainty principle in economics, which says that the forecast affects the outcome.

The uncertainty principle in economics arises from a simple fact: we are all actors in the economy and the models we use determine how we behave. If a model is discovered to be correct, then we will change our behavior to reflect our new understanding of reality — and when enough of us do so, the original model stops being correct. In this sense future human behavior must necessarily be uncertain.

Levine is certainly right that insofar as the discovery of a new model changes expectations, the model itself can change outcomes. If the model predicts a crisis, the model, if it is believed, may be what causes the crisis. Fair enough, but Levine believes that this uncertainty principle entails the rationality of expectations.

The uncertainty principle in economics leads directly to the theory of rational expectations. Just as the uncertainty principle in physics is consistent with the probabilistic predictions of quantum mechanics (there is a 20% chance this particle will appear in this location with this speed) so the uncertainty principle in economics is consistent with the probabilistic predictions of rational expectations (there is a 3% chance of a stock market crash on October 28).

This claim, if I understand it, is shocking. The equations of quantum mechanics may be able to predict the probability that a particle will appear at given location with a given speed, I am unaware of any economic model that can provide even an approximately accurate prediction of the probability that a financial crisis will occur within a given time period.

Note what rational expectations are not: they are often confused with perfect foresight — meaning we perfectly anticipate what will happen in the future. While perfect foresight is widely used by economists for studying phenomena such as long-term growth where the focus is not on uncertainty — it is not the theory used by economists for studying recessions, crises or the business cycle. The most widely used theory is called DSGE for Dynamic Stochastic General Equilibrium. Notice the word stochastic — it means random — and this theory reflects the necessary randomness brought about by the uncertainty principle.

I have already observed that the introduction of random variables into a general equilibrium is not a significant relaxation of the predictive capacities of agents — and perhaps not even a relaxation, but an enhancement of the predictive capacities of the agents. The problem with this distinction between perfect foresight and stochastic disturbances is that there is no relaxation of the requirement that all agents share the same expectations of all future prices in all possible future states of the world. The world described is a world without surprise and without regret. From the standpoint of the informational requirements imposed on agents, the distinction between perfect foresight and rational expectations is not worth discussing.

In simple language what rational expectations means is “if people believe this forecast it will be true.”

Well, I don’t know about that. If the forecast is derived from a consistent, but empirically false, model, the assumption of rational expectations will ensure that the forecast of the model coincides with what people expect. But the real world may not cooperate, producing an outcome different from what was forecast and what was rationally expected. The expectation of a correct forecast does not guarantee the truth of the forecast unless the model generating the forecast is true. Is Levine convinced that the models used by economists are sufficiently close to being true to generate valid forecasts with a frequency approaching that of the Newtonian model in forecasting, say, solar eclipses? More generally, Levine seems to be confusing the substantive content of a theory — what motivates the agents populating theory and what constrains the choices of those agents in their interactions with other agents and with nature — with an assumption about how agents form expectations. This confusion becomes palpable in the next sentence.

By contrast if a theory is not one of rational expectations it means “if people believe this forecast it will not be true.”

I don’t what it means to say “a theory is not one of rational expectations.” Almost every economic theory depends in some way on the expectations of the agents populating the theory. There are many possible assumptions to make about how expectations are formed. Most of those assumptions about how expectations are formed allow, though they do not require, expectations to correspond to the predictions of the model. In other words, expectations can be viewed as an equilibrating variable of a model. To make a stronger assertion than that is to make an empirical claim about how closely the real world corresponds to the equilibrium state of the model. Levine goes on to make just such an assertion. Referring to a non-rational-expectations theory, he continues:

Obviously such a theory has limited usefulness. Or put differently: if there is a correct theory, eventually most people will believe it, so it must necessarily be rational expectations. Any other theory has the property that people must forever disbelieve the theory regardless of overwhelming evidence — for as soon as the theory is believed it is wrong.

It is hard to interpret what Levine is saying. What theory or class of theories is being dismissed as having limited usefulness? Presumably, all theories that are not “of rational expectations.” OK, but why is their usefulness limited? Is it that they are internally inconsistent, i.e., they lack the fixed-point property whose absence signals internal inconsistency, or is there some other deficiency? Levine seems to be conflating the two very different ways of understanding rational expectations (a test for internal inconsistency v. a substantive empirical hypothesis). Perhaps that’s why Levine feels compelled to paraphrase. But the paraphrase makes it clear that he is not distinguishing between the substantive theory and the specific expectational hypothesis. I also can’t tell whether his premise (“if there is a correct theory”) is meant to be a factual statement or a hypothetical? If it is the former, it would be nice if the correct theory were identified. If the correct theory can’t even be identified, how are people supposed to know which theory they are supposed to believe, so that they can form their expectations accordingly? Rather than an explanation for why the correct rational-expectations theory will eventually be recognized, this sounds like an explanation for why the correct theory is unknowable. Unless, of course, we assume that the rational expectations are a necessary feature of reality in which case, people have been forming expectations based on the one true model all along, and all economists are doing is trying to formalize a pre-existing process of expectations formation that already solves the problem. But the rest of his post (see part two here) makes it clear that Levine (properly) does not hold that extreme position about rational expectations.

So in the end , I find myself unable to make sense of rational expectations except as a test for the internal consistency of an economic model, and, perhaps also, as a tool for policy analysis. Just as one does not want to work with a model that is internally inconsistent, one does not want to formulate a policy based on the assumption that people will fail to understand the effects of the policy being proposed. But as a tool for understanding how economies actually work and what can go wrong, the rational-expectations assumption abstracts from precisely the key problem, the inconsistencies between the expectations held by different agents, which are an inevitable, though certainly not the only, cause of the surprise and regret that are so characteristic of real life.

Margaret Thatcher and the Non-Existence of Society

Margaret Thatcher was a great lady, and a great political leader, reversing, by the strength of her character, a ruinous cycle of increasing state control of the British economy imposed in semi-collaboration with the British trade unions. That achievement required not just a change of policy, but a change in the way that the British people thought about the role of the state in organizing and directing economic activity. Mrs. Thatcher’s greatest achievement was not to change this or that policy, but to change the thinking of her countrymen. Leaders who can get others to change their thinking in fundamental ways rarely do so by being subtle; Mrs. Thatcher was not subtle.

Mrs. Thatcher had the great merit of admiring the writings of F. A. Hayek. How well she understood them, I am not in a position to say. But Hayek was a subtle thinker, and I think it is worth considering one instance — a somewhat notorious instance — in which Mrs. Thatcher failed to grasp Hayek’s subtlety. But just to give Mrs. Thatcher her due, it is also worth noting that, though Mrs. Thatcher admired Hayek enormously, she was not at all slavish in her admiration. And so it is only fair to recall that Mrs. Thatcher properly administered a stinging rebuke to Hayek, when he once dared to suggest to her that she could learn from General Pinochet about how to implement pro-market economic reforms.

However, I am sure you will agree that, in Britain with our democratic institutions and the need for a high degree of consent, some of the measures adopted in Chile are quite unacceptable. Our reform must be in line with our traditions and our Constitution. At times the process may seem painfully slow. But I am certain we shall achieve our reforms in our own way and in our own time. Then they will endure.

But Mrs. Thatcher did made the egregious mistake of asserting “there is no such thing as society, just individuals.” Here are two quotations in which the assertion was made.

And, you know, there is no such thing as society. There are individual men and women, and there are families. And no government can do anything except through people, and people must look to themselves first. It’s our duty to look after ourselves and then, also to look after our neighbour. People have got the entitlements too much in mind, without the obligations, because there is no such thing as an entitlement unless someone has first met an obligation.

And,

There is no such thing as society. There is living tapestry of men and women and people and the beauty of that tapestry and the quality of our lives will depend upon how much each of us is prepared to take responsibility for ourselves and each of us prepared to turn round and help by our own efforts those who are unfortunate.

In making that assertion, Mrs. Thatcher may have been inspired by Hayek, who wrote at length about the meaninglessness of the concept of “social justice.” But Hayek’s point was not that “social justice” is meaningless, because there is no such thing as society, but that justice, like democracy, is a concept that has no meaning except as it relates to society, so that adding “social” as a modifier to “justice” or to “democracy” can hardly impart any additional meaning to the concept it is supposed to modify. But the subtlety of Hayek’s reasoning was evidently beyond Mrs. Thatcher’s grasp.

Here’s a wonderful example of Hayek talking about society.

In the last resort we find ourselves constrained to repudiate the ideal of the social concept because it has become the ideal of those who, on principle, deny the existence of a true society and whose longing is for the artificially constructed and the rationally controlled. In this context, it seems to me that a great deal of what today professes to be social is, in the deeper and truer sense of the word, thoroughly and completely anti-social.

Nevertheless, while Mrs. Thatcher undoubtedly made her share of mistakes, on some really important decisions, decisions that really counted for the future of her country, she got things basically right.

Hayek v. Hawtrey on the Trade Cycle

While searching for material on the close and multi-faceted relationship between Keynes and Hawtrey which I am now studying and writing about, I came across a remarkable juxtaposition of two reviews in the British economics journal Economica, published by the London School of Economics. Economica was, after the Economic Journal published at Cambridge (and edited for many years by Keynes), probably the most important economics journal published in Britain in the early 1930s. Having just arrived in Britain in 1931 to a spectacularly successful debut with his four lectures at LSE, which were soon published as Prices and Production, and having accepted the offer of a professorship at LSE, Hayek began an intense period of teaching and publishing, almost immediately becoming the chief rival of Keynes. The rivalry had been more or less officially inaugurated when Hayek published the first of his two-part review-essay of Keynes’s recently published Treatise on Money in the August 1931 issue of Economica, followed by Keynes’s ill-tempered reply and Hayek’s rejoinder in the November 1931 issue, with the second part of Hayek’s review appearing in the February 1932 issue.

But interestingly in the same February issue containing the second installment of Hayek’s lengthy review essay, Hayek also published a short (2 pages, 3 paragraphs) review of Hawtrey’s Trade Depression and the Way Out immediately following Hawtrey’s review of Hayek’s Prices and Production in the same issue. So not only was Hayek engaging in controversy with Keynes, he was arguing with Hawtrey as well. The points at issue were similar in the two exchanges, but there may well be more to learn from the lower-key, less polemical, exchange between Hayek and Hawtrey than from the overheated exchange between Hayek and Keynes.

So here is my summary (in reverse order) of the two reviews:

Hayek on Trade Depression and the Way Out.

Hayek, in his usual polite fashion, begins by praising Hawtrey’s theoretical eminence and skill as a clear expositor of his position. (“the rare clarity and painstaking precision of his theoretical exposition and his very exceptional knowledge of facts making anything that comes from his pen well worth reading.”) However, noting that Hawtrey’s book was aimed at a popular rather than a professional audience, Hayek accuses Hawtrey of oversimplification in attributing the depression to a lack of monetary stimulus.

Hayek proceeds in his second paragraph to explain what he means by oversimplification. Hayek agrees that the origin of the depression was monetary, but he disputes Hawtrey’s belief that the deflationary shocks were crucial.

[Hawtrey's] insistence upon the relation between “consumers’ income” and “consumers’ outlay” as the only relevant factor prevents him from seeing the highly important effects of monetary causes upon the capitalistic structure of production and leads him along the paths of the “purchasing power theorists” who see the source of all evil in the insufficiency of demand for consumers goods. . . . Against all empirical evidence, he insists that “the first symptom of contracting demand is a decline in sales to the consumer or final purchaser.” In fact, of course, depression has always begun with a decline in demand, not for consumers’ goods but for capital goods, and the one marked phenomenon of the present depression was that the demand for consumers’ goods was very well maintained for a long while after the crisis occurred.

Hayek’s comment seems to me to misinterpret Hawtrey slightly. Hawtrey wrote “a decline in sales to the consumer or final purchaser,” which could refer to a decline in the sales of capital equipment as well as the sales of consumption goods, so Hawtrey’s assertion was not necessarily inconsistent with Hayek’s representation about the stability of consumption expenditure immediately following a cyclical downturn. It would also not be hard to modify Hawtrey’s statement slightly; in an accelerator model, with which Hawtrey was certainly familiar, investment depends on the growth of consumption expenditures, so that a leveling off of consumption, rather than an actual downturn in consumption, would suffice to trigger the downturn in investment which, according to Hayek, was a generally accepted stylized fact characterizing the cyclical downturn.

Hayek continues:

[W]hat Mr. Hawtrey, in common with many other English economists [I wonder whom Hayek could be thinking of], lacks is an adequate basic theory of the factors which affect [the] capitalistic structure of production.

Because of Hawtrey’s preoccupation with the movements of the overall price level, Hayek accuses Hawtrey of attributing the depression solely “to a process of deflation” for which the remedy is credit expansion by the central banks. [Sound familiar?]

[Hawtrey] seems to extend [blame for the depression] on the policy of the Bank of England even to the period before 1929, though according to his own criterion – the rise in the prices of the original factors of production [i.e., wages] – it is clear that, in that period, the trouble was too much credit expansion. “In 1929,” Mr. Hawtrey writes, “when productive activity was at its highest in the United States, wages were 120 percent higher than in 1913, while commodity prices were only 50 percent higher.” Even if we take into account the fact that the greater part of this rise in wages took place before 1921, it is clear that we had much more credit expansion before 1929 than would have been necessary to maintain the world-wage-level. It is not difficult to imagine what would have been the consequences if, during that period, the Bank of England had followed Mr. Hawtrey’s advice and had shown still less reluctance to let go. But perhaps, this would have exposed the dangers of such frankly inflationist advice quicker than will now be the case.

A remarkable passage indeed! To accuse Hawtrey of toleration of inflation, he insinuates that the 50% rise in wages from 1913 to 1929, was at least in part attributable to the inflationary policies Hawtrey was advocating. In fact, I believe that it is clear, though I don’t have easy access to the best data source C. H. Feinstein’s “Changes in Nominal Wages, the Cost of Living, and Real Wages in the United Kingdom over Two Centuries, 1780-1990,” in Labour’s Reward edited by P. Schoillers and V. Zamagni (1995). From 1922 to 1929 the overall trend of nominal wages in Britain was actually negative. Hayek’s reference to “frankly inflationist advice” was not just wrong, but wrong-headed.

Hawtrey on Prices and Production

Hawtrey spends the first two or three pages or so of his review giving a summary of Hayek’s theory, explaining the underlying connection between Hayek and the Bohm-Bawerkian theory of production as a process in time, with the length of time from beginning to end of the production process being a function of the rate of interest. Thus, reducing the rate of interest leads to a lengthening of the production process (average period of production). Credit expansion financed by bank lending is the key cyclical variable, lengthening the period of production, but only temporarily.

The lengthening of the period of production can only take place as long as inflation is increasing, but inflation cannot increase indefinitely. When inflation stops increasing, the period of production starts to contract. Hawtrey explains:

Some intermediate products (“non-specific”) can readily be transferred from one process to another, but others (“specific”) cannot. These latter will no longer be needed. Those who have been using them, and still more those who have producing them, will be thrown out of employment. And here is the “explanation of how it comes about at certain times that some of the existing resources cannot be used.” . . .

The originating cause of the disturbance would therefore be the artificially enhanced demand for producers’ goods arising when the creation of credit in favour of producers supplements the normal flow savings out of income. It is only because the latter cannot last for ever that the reaction which results in under-employment occurs.

But Hawtrey observes that only a small part of the annual capital outlay is applied to lengthening the period of production, capital outlay being devoted mostly to increasing output within the existing period of production, or to enhancing productivity through the addition of new plant and equipment embodying technical progress and new inventions. Thus, most capital spending, even when financed by credit creation, is not associated with any alteration in the period of production. Hawtrey would later introduce the terms capital widening and capital deepening to describe investments that do not affect the period of production and those that do affect it. Nor, in general, are capital-deepening investments the most likely to be adopted in response to a change in the rate of interest.

Similarly, If the rate of interest were to rise, making the most roundabout processes unprofitable, it does not follow that such processes will have to be scrapped.

A piece of equipment may have been installed, of which the yield, in terms of labour saved, is 4 percent on its cost. If the market rate of interest rises to 5 percent, it would no longer be profitable to install a similar piece. But that does not mean that, once installed, it will be left idle. The yield of 4 percent is better than nothing. . . .

When the scrapping of plant is hastened on account of the discovery of some technically improved process, there is a loss not only of interest but of the residue of depreciation allowance that would otherwise have accumulated during its life of usefulness. It is only when the new process promises a very suitable gain in efficiency that premature scrapping is worthwhile. A mere rise in the rate of interest could never have that effect.

But though a rise in the rate of interest is not likely to cause the scrapping of plant, it may prevent the installation of new plant of the kind affected. Those who produce such plant would be thrown out of employment, and it is this effect which is, I think, the main part of Dr. Hayek’s explanation of trade depressions.

But what is the possible magnitude of the effect? The transition from activity to depression is accompanied by a rise in the rate of interest. But the rise in the long-term rate is very slight, and moreover, once depression has set in, the long-term rate is usually lower than ever.

Changes are in any case perpetually occurring in the character of the plant and instrumental goods produced for use in industry. Such changes are apt to throw out of employment any highly specialized capital and labour engaged in the production of plant which becomes obsolete. But among the causes of obsolescence a rise in the rate of interest is certainly one of the least important and over short periods it may safely be said to be quite negligible.

Hawtrey goes on to question Hayek’s implicit assumption that the effects of the depression were an inevitable result of stopping the expansion of credit, an assumption that Hayek disavowed much later, but it was not unreasonable for Hawtrey to challenge Hayek on this point.

It is remarkable that Dr. Hayek does not entertain the possibility of a contraction of credit; he is content to deal with the cessation of further expansion. He maintains that at a time of depression a credit expansion cannot provide a remedy, because if the proportion between the demand for consumers’ goods and the demand for producers’ goods “is distorted by the creation of artificial demand, it must mean that part of the available resources is again led into a wrong direction and a definite and lasting adjustment is again postponed.” But if credit being contracted, the proportion is being distorted by an artificial restriction of demand.

The expansion of credit is assumed to start by chance, or at any rate no cause is suggested. It is maintained because the rise of prices offers temporary extra profits to entrepreneurs. A contraction of credit might equally well be assumed to start, and then to be maintained because the fall of prices inflicts temporary losses on entrepreneurs, and deters them from borrowing. Is not this to be corrected by credit expansion?

Dr. Hayek recognizes no cause of under-employment of the factors of production except a change in the structure of production, a “shortening of the period.” He does not consider the possibility that if, through a credit contraction or for any other reason, less money altogether is spent on intermediate products (capital goods), the factors of production engaged in producing these products will be under-employed.

Hawtrey then discusses the tension between Hayek’s recognition that the sense in which the quantity of money should be kept constant is the maintenance of a constant stream of money expenditure, so that in fact an ideal monetary policy would adjust the quantity of money to compensate for changes in velocity. Nevertheless, Hayek did not feel that it was within the capacity of monetary policy to adjust the quantity of money in such a way as to keep total monetary expenditure constant over the course of the business cycle.

Here are the concluding two paragraphs of Hawtrey’s review:

In conclusion, I feel bound to say that Dr. Hayek has spoiled an original piece of work which might have been an important contribution to monetary theory, by entangling his argument with the intolerably cumbersome theory of capital derived from Jevons and Bohm-Bawerk. This theory, when it was enunciated, was a noteworthy new departure in the metaphysics of political economy. But it is singularly ill-adapted for use in monetary theory, or indeed in any practical treatment of the capital market.

The result has been to make Dr. Hayek’s work so difficult and obscure that it is impossible to understand his little book of 112 pages except at the cost of many hours of hard work. And at the end we are left with the impression, not only that this is not a necessary consequence of the difficulty of the subject, but that he himself has been led by so ill-chosen a method of analysis to conclusions which he would hardly have accepted if given a more straightforward form of expression.


About Me

David Glasner
Washington, DC

I am an economist at the Federal Trade Commission. Nothing that you read on this blog necessarily reflects the views of the FTC or the individual commissioners. Although I work at the FTC as an antitrust economist, most of my research and writing has been on monetary economics and policy and the history of monetary theory. In my book Free Banking and Monetary Reform, I argued for a non-Monetarist non-Keynesian approach to monetary policy, based on a theory of a competitive supply of money. Over the years, I have become increasingly impressed by the similarities between my approach and that of R. G. Hawtrey and hope to bring Hawtrey's unduly neglected contributions to the attention of a wider audience.

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 276 other followers


Follow

Get every new post delivered to your Inbox.

Join 276 other followers